Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 2117

Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification

Pages: 66
Obsoleted by:  2362
Part 2 of 3 – Pages 13 to 41
First   Prev   Next

ToP   noToC   RFC2117 - Page 13   prevText
3 Detailed Protocol Description

   This section describes the protocol operations from the perspective
   of an individual router implementation.  In particular, for each
   message type we describe how it is generated and processed.
ToP   noToC   RFC2117 - Page 14
3.1 Hello

   Hello messages are sent so neighboring routers can discover each
   other.

3.1.1 Sending Hellos

   Hello messages are sent periodically between PIM neighbors, every
   [Hello-Period] seconds.  This informs routers what interfaces have
   PIM neighbors.  Hello messages are multicast using address 224.0.0.13
   (ALL-PIM-ROUTERS group). The packet includes a Holdtime, set to
   [Hello-Holdtime], for neighbors to keep the information valid.
   Hellos are sent on all types of communication links.

3.1.2 Receiving Hellos

   When a router receives a Hello message, it stores the IP address for
   that neighbor, sets its Neighbor-timer for the Hello sender to the
   Holdtime included in the Hello, and determines the Designated Router
   (DR) for that interface.  The highest IP addressed system is elected
   DR. Each Hello received causes the DR's address to be updated.

   When a router that is the active DR receives a Hello from a new
   neighbor (i.e., from an IP address that is not yet in the DRs
   neighbor table), the DR unicasts its most recent RP-set information
   to the new neighbor.

3.1.3 Timing out neighbor entries

   A periodic process is run to time out PIM neighbors that have not
   sent Hellos. If the DR has gone down, a new DR is chosen by scanning
   all neighbors on the interface and selecting the new DR to be the one
   with the highest IP address. If an interface has gone down, the
   router may optionally time out all PIM neighbors associated with the
   interface.

3.2 Join/Prune

   Join/Prune messages are sent to join or prune a branch off of the
   multicast distribution tree. A single message contains both a join
   and prune list, either one of which may be null.  Each list contains
   a set of source addresses, indicating the source- specific trees or
   shared tree that the router wants to join or prune.

3.2.1 Sending Join/Prune Messages

   Join/Prune messages are merged such that a message sent to a
   particular upstream neighbor, N, includes all of the current joined
ToP   noToC   RFC2117 - Page 15
   and pruned sources that are reached via N; according to unicast
   routing Join/Prune messages are multicast to all routers on multi-
   access networks with the target address set to the next hop router
   towards S or RP. Join/Prune messages are sent every [Join/Prune-
   Period] seconds. In the future we will introduce mechanisms to rate-
   limit this control traffic on a hop by hop basis, in order to avoid
   excessive overhead on small links.  In addition, certain events cause
   triggered Join/Prune messages to be sent.

3.2.1.1 Periodic Join/Prune Messages

   A router sends a periodic Join/Prune message to each distinct RPF
   neighbor associated with each (S,G), (*,G) and (*,*,RP) entry.
   Join/Prune messages are only sent if the RPF neighbor is a PIM
   neighbor.  A periodic Join/Prune message sent to a particular RPF
   neighbor is constructed as follows:

   1    Each router determines the RP for a (*,G) entry by using
        the hash function described. The RP address (with RPT and
        WC bits set) is included in the join list of a periodic
        Join/Prune message under the following conditions:

        1    The Join/Prune message is being sent to the RPF
             neighbor toward the RP for an active (*,G) or (*,*,RP)
             entry, and

        2    The outgoing interface list in the (*,G) or (*,*,RP)
             entry is non-NULL, or the router is the DR on the same
             interface as the RPF neighbor.

   2    A particular source address, S, is included in the join
        list with the RPT and WC bits cleared under the following
        conditions:

        1    The Join/Prune message is being sent to the RPF
             neighbor toward S, and

        2    There exists an active (S,G) entry with the RPT-bit
             flag cleared, and

        3    The oif list in the (S,G) entry is not null.

   3    A particular source address, S, is included in the prune
        list with the RPT and WC bits cleared under the following
        conditions:

        1    The Join/Prune message is being sent to the RPF
             neighbor toward S, and
ToP   noToC   RFC2117 - Page 16
        2    There exists an active (S,G) entry with the RPT-bit
             flag cleared, and

        3    The oif list in the (S,G) entry is null.

   4    A particular source address, S, is included in the prune
        list with the RPT-bit set and the WC bit cleared under the
        following conditions:

        1    The Join/Prune message is being sent to the RPF
             neighbor toward the RP and there exists a (S,G) entry
             with the RPT-bit flag set and null oif list, or

        2    The Join/Prune message is being sent to the RPF
             neighbor toward the RP, there exists a (S,G) entry
             with the RPT-bit flag cleared and SPT-bit set, and the
             incoming interface toward S is different than the
             incoming interface toward the RP, or

        3    The Join/Prune message is being sent to the RPF
             neighbor toward the RP, and there exists a (*,G) entry
             and (S,G) entry for a directly connected source.

   5    The RP address (with RPT and WC bits set) is included in
        the prune list if:

        1    The Join/Prune message is being sent to the RPF
             neighbor toward the RP and there exists a (*,G) entry
             with a null oif list (see Section 3.5.2).

3.2.1.2 Triggered Join/Prune Messages

   In addition to periodic messages, the following events will trigger
   Join/Prune messages if as a result, a) a new entry is created, or b)
   the oif list changes from null to non-null or non-null to null. The
   contents of triggered messages are the same as the periodic,
   described above.

   1    Receipt of an indication from IGMP that the state of
        directly-connected- membership has changed (i.e., new members
        have just joined `membership indication' or all members have
        left), for a group G, may cause the last-hop router to build
        or modify corresponding (*,G) state.  When IGMP indicates
        that there are no longer directly connected members, the oif
        is removed from the oif list if the oif- timer is not
        running.  A Join/Prune message is triggered if and only if
        a) a new entry is created, or b) the oif list changes from
        null to non-null or non-null to null, as follows :
ToP   noToC   RFC2117 - Page 17
        1    If the receiving router does not have a route entry
             for G the router creates a (*,G) entry, copies the
             oif list from the corresponding (*,*,RP) entry
             (if it exists), and includes the interface included
             in the IGMP membership indication in the oif list;
             as always, the router never includes the entry's iif
             in the oif list.  The router sends a Join/Prune
             message towards the RP with the RP address and RPT-bit
             and WC-bits set in the join list. Or,

        2    If a (S,G)RPT-bit or (*,G) entry already exists, the
             interface included in the IGMP membership indication
             is added to the oif list (if it was not included already).

   2    Receipt of a Join/Prune message for (S,G), (*,G) or (*,*,RP)
        will cause building or modifying corresponding state, and
        subsequent triggering of upstream Join/Prune messages, in the
        following cases:

        1    When there is no current route entry, the RP address
             included in the Join/Prune message is checked against
             the local RP-Set information. If it matches, an entry
             will be created and the new entry will in turn trigger
             an upstream Join/Prune message. If the router has no
             RP-Set information it may discard the message, or
             optionally use the RP address included in the message.

        2    When the outgoing interface list of an (S,G)RPT-bit
             entry becomes null, the triggered Join/Prune message
             will contain S in the prune list.

        3    When there exists a (S,G)RPT-bit with null oif list,
             and an (*,G) Join/Prune message is received, the
             arriving interface is added to the oif list and a (*,G)
             Join/Prune message is triggered upstream.

        4    When there exists a (*,G) with null oif list, and a
             (*,*,RP) Join/Prune message is received, the receiving
             interface is added to the oif list and a (*,*,RP)
             Join/Prune message is triggered upstream.

   3    Receipt of a packet that matches on a (S,G) entry whose
        SPT-bit is cleared triggers the following if the packet
        arrived on the correct incoming interface and there is a
        (*,G) or (*,*,RP) entry with a different incoming
        interface: a) the router sets the SPT-bit on the (S,G)
        entry, and b) the router sends a Join/Prune message
        towards the RP with S and a set RPT-bit in the prune list.
ToP   noToC   RFC2117 - Page 18
   4    When a Join/Prune message is received for a group G, the
        prune list is checked. If the prune list contains a source
        or RP for which the receiving router has a corresponding
        active (S,G), (*,G) or (*,*,RP) entry, and whose iif is
        that on which the Join/Prune was received, then a join for
        (S,G), (*,G) or (*,*,RP) is triggered to override the prune,
        respectively. (This is necessary in the case of parallel
        downstream routers connected to a multi-access network.)

   5    When the RP fails, the RP will not be included in the
        Bootstrap messages sent to all routers in that domain.
        This triggers the DRs to send (*,G) Join/Prune messages
        towards new RP for the group, as determined by the RP-Set
        and the hash function.  As described earlier, PMBRs trigger
        (*,*,RP) joins towards each RP in the RP-Set.

   6    When an entry's Join/Prune-Suppression timer expires, a
        Join/Prune message is triggered upstream corresponding to
        that entry, even if the outgoing interface has not
        transitioned between null and non-null states.

   7    When the RPF neighbor changes (whether due to an Assert or
        changes in unicast routing), the router sets a random delay
        timer (the Random-Delay-Join-Timer) whose expiration triggers
        sending of a Join/Prune message for the asserted route entry
        to the Assert winner (if the Join/Prune Suppression timer has
        expired.)

   We do not trigger prunes onto interfaces based on data packets.  Data
   packets that arrive on the wrong incoming interface are silently
   dropped.  However, on point-to-point interfaces triggered prunes may
   be sent as an optimization.

   3.2.1.3 Fragmentation: It is possible that a Join/Prune message
   constructed according to the preceding rules could exceed the MTU of
   a network. In this case, the message can undergo semantic
   fragmentation whereby information corresponding to different groups
   can be sent in different messages.  However, if a Join/Prune message
   must be fragmented the complete prune list corresponding to a group G
   must be included in the same Join/Prune message as the associated
   RP-tree Join for G. If such semantic fragmentation is not possible,
   IP fragmentation should be used between the two neighboring hops.
ToP   noToC   RFC2117 - Page 19
3.2.2 Receiving Join/Prune Messages When a router receives a
           Join/Prune message, it processes it as follows.

   The receiver of the Join/Prune notes the interface on which the PIM
   message arrived, call it I. The receiver then checks to see if the
   Join/Prune message was addressed to the receiving router itself
   (i.e., the router's address appears in the Unicast Upstream Neighbor
   Router field of the Join/Prune message).  (If the router is connected
   to a multiaccess LAN, the message could be intended for a different
   router.) If the Join/Prune is for this router the following actions
   are taken.

   For each group address G, in the Join/Prune message, the associated
   join list is processed as follows. We refer to each address in the
   join list as Sj; Sj refers to the RP if the RPT- bit and WC-bit are
   both set. For each Sj in the join list of the Join/Prune message:

   1    If an address, Sj, in the join list of the Join/Prune
        message  has  the RPT-bit and WC-bit set, then Sj is the RP
        address used by the downstream router(s) and the  following
        actions are taken:

        1    If Sj is not the same as the receiving router's RP
             mapping for G, the receiving router may ignore the
             Join/Prune message with respect to that group entry.
             If the router does not have any RP-Set information, it
             may use the address Sj included in the Join/Prune
             message as the RP for the group.

        2    If Sj is the same as the receiving router's RP mapping
             for G, the receiving router adds I to the outgoing
             interface list of the (*,G) route entry (if there is
             no (*,G) entry, the router creates one first) and sets
             the Oif-timer for that interface to the Holdtime
             specified in the Join/Prune message.  In addition, the
             Oif-Deletion-Delay for that interface is set to 1/3rd
             the Holdtime specified in the Join/Prune message.

             If a (*,*,RP) entry exists, for the RP associated with
             G, then the oif list of the newly created (*,G) entry
             is copied from that (*,*,RP) entry.

        3    For each (Si,G) entry associated with group G, if Si
             is not included in the prune list, and if I is not the
             iif then interface I is added to the oif list and the
             Oif-timer for that interface in each affected entry
             is increased (never decreased) to the Holdtime included
             in the Join/Prune message.  In addition, if the
ToP   noToC   RFC2117 - Page 20
             Oif-timer for that interface is increased, the
             Oif-Deletion-Delay for that interface is set to 1/3rd
             the Holdtime specified in the Join/Prune message.

             If the group address in the Join/Prune message is `*'
             then every (*,G) and (S,G) entry, whose group address
             hashes to the RP indicated in the (*,*,RP) Join/Prune
             message, is updated accordingly. A `*' in the group
             field of the Join/Prune is represented by a group
             address 224.0.0.0 and a group mask length of 4,
             indicating a (*,*,RP) Join.

        4    If the (Si,G) entry has its RPT-bit flag set to 1, and
             its oif list is the same as the (*,G) oif list, then
             the (Si,G)RPT-bit entry is deleted,

        5    The incoming interface is set to the interface used to
             send unicast packets to the RP in the (*,G) route
             entry, i.e., RPF interface toward the RP.

   2    For each address, Sj, in the join list whose RPT-bit and
        WC-bit are not set, and for which there is no existing (Sj,G)
        route entry, the router initiates one.  The router creates a
        (S,G) entry and copies all outgoing interfaces from the
        (S,G)RPT-bit entry, if it exists. If there is no (S,G) entry,
        the oif list is copied from the (*,G) entry; and if there is
        no (*,G) entry, the oif list is copied from the (*,*,RP)
        entry, if it exists.  In all cases, the iif of the (S,G)
        entry is always excluded from the oif list.

        1    The outgoing interface for (Sj,G) is set to I.  The
             incoming interface for (Sj,G) is set to the interface
             used to send unicast packets to Sj (i.e., the RPF
             neighbor).

        2    If the interface used to reach Sj, is the same as I,
             this represents an error (or a unicast routing change)
             and the Join/Prune must not be processed.
ToP   noToC   RFC2117 - Page 21
   3    For each address, Sj, in the join list of the Join/Prune
        message, for which there is an existing (Sj,G) route entry,

        1    If the RPT-bit is not set for Sj listed in the
             Join/Prune message, but the RPT-bit flag is set on the
             existing (Sj,G) entry, the router clears the RPT-bit
             flag on the (Sj,G) entry, sets the incoming interface
             to point towards Sj for that (Sj,G) entry, and sends a
             Join/Prune message corresponding to that entry through
             the new incoming interface; and

        2    If I is not the same as the existing incoming
             interface, the router adds I to the list of outgoing
             interfaces.

        3    The Oif-timer for I is increased (never decreased)
             to the Holdtime included in the Join/Prune message.
             In addition, if the Oif-timer for that interface is
             increased, the Oif-Deletion-Delay for that interface
             is set to 1/3rd the Holdtime specified in the
             Join/Prune message.

        4    The (Sj,G) entry's SPT bit is cleared until data comes
             down the shortest path tree.

   For each group address G, in the Join/Prune message, the associated
   prune list is processed as follows. We refer to each address in the
   prune list as Sp; Sp refers to the RP if the RPT-bit and WC-bit are
   both set. For each Sp in the prune list of the Join/Prune message:


   1    For each address, Sp, in the prune list whose RPT-bit and
        WC-bit are cleared:

        1    If there is an existing (Sp,G) route entry, the router
             lowers the Oif-timer for I to its Oif-Deletion-Delay,
             allowing for other downstream routers on a multi-
             access LAN to override the prune. However, on point-
             to-point links, the oif-timer is expired immediately.

        2    If the router has a current (*,G), or (*,*,RP), route
             entry, and if the existing (Sp,G) entry has its RPT-
             bit flag set to 1, then this (Sp,G)RPT-bit entry is
             maintained (not deleted) even if its outgoing
             interface list is null.
ToP   noToC   RFC2117 - Page 22
   2    For each address, Sp, in the prune list whose RPT-bit is
        set and whose WC-bit cleared:

        1    If there is an existing (Sp,G) route entry, the router
             lowers the entry's Oif-timer for I to its
             Oif-Deletion-Delay, allowing for other downstream
             routers on a multi- access LAN to override the prune.
             However, on point-to-point links, the oif-timer is
             expired immediately.

        2    If the router has a current (*,G), or (*,*,RP), route
             entry, and if the existing (Sp,G) entry has its
             RPT- bit flag set to 1, then this (Sp,G)RPT-bit entry
             is not deleted, and the Entry-timer is restarted, even
             if its outgoing interface list is null.

        3    If (*,G), or corresponding (*,*,RP), state exists, but
             there is no (Sp,G) entry, an (Sp,G)RPT-bit entry is
             created. The outgoing interface list is copied from the
             (*,G), or (*,*,RP), entry, with the interface, I, on
             which the prune was received, is deleted.  Packets from
             the pruned source, Sp, match on this state and are not
             forwarded toward the pruned receivers.

        4    If there exists a (Sp,G) entry, with or without the
             RPT-bit set, the oif-timer for I is expired, and the
             Entry-timer is restarted.

   3    For each address, Sp, in the prune list whose RPT-bit and
        WC-bit are both set:

        1    If there is an existing (*,G) entry, with Sp as the RP
             for G, the router lowers the entry's Oif-timer for I
             to its Oif-Deletion-Delay, allowing for other
             downstream routers on a multi-access LAN to override the
             prune. However, on point-to-point links, the oif-timer
             is expired immediately.

        2    If the corresponding (*,*,RP) state exists, but there
             is no (*,G) entry, a (*,G) entry is created. The
             outgoing interface list is copied from (*,*,RP) entry,
             with the interface, I, on which the prune was
             received, deleted.

        For any new (S,G), (*,G) or (*,*,RP) entry created by an
        incoming Join/Prune message, the SPT-bit is cleared (and if a
        Join/Prune-Suppression timer is used, it is left off.)
ToP   noToC   RFC2117 - Page 23
   If the entry has a Join/Prune-Suppression timer associated with it,
   and if the received Join/Prune does not indicate the router as its
   target, then the receiving router examines the join and prune lists
   to see if any addresses in the list `completely- match' existing
   (S,G), (*,G), or (*,*,RP) state for which the receiving router
   currently schedules Join/Prune messages. An element on the join or
   prune list `completely-matches' a route entry only if both the IP
   addresses and RPT-bit flag are the same. If the incoming Join/Prune
   message completely matches an existing (S,G), (*,G), or (*,*,RP)
   entry and the Join/Prune arrived on the iif for that entry, then the
   router compares the Holdtime included in the Join/Prune message, to
   its own [Join/Prune-Holdtime].  If its own [Join/Prune-Holdtime] is
   lower, the Join/Prune-Suppression-timer is started at the
   [Join/Prune-Suppression-Timeout]. If the [Join/Prune-Holdtime] is
   equal, the tie is resolved in favor of the Join/Prune Message
   originator that has the higher IP address. When the Join/Prune timer
   expires, the router triggers a Join/Prune message for the
   corresponding entry(ies).

3.3 Register and Register-Stop

   When a source first starts sending to a group its packets are
   encapsulated in Register messages and sent to the RP. If the data
   rate warrants source-specific paths, the RP sets up source specific
   state and starts sending (S,G) Join/Prune messages toward the source,
   with S in the join list.

3.3.1 Sending Registers and Receiving Register-Stops

   Register messages are sent as follows:

   1    When a DR receives a packet from a directly connected
        source, S

        1    If there is no corresponding (S,G) entry, and the
             router has RP-Set information, the DR creates one with
             the Register-Suppression-timer turned off and the RP
             address set according to the hash function mapping for
             the corresponding group. The oif list is copied from
             existing (*,G) or (*,*,RP) entries, if they exist. The
             iif of the (S,G) entry is always excluded from the oif
             list.

        2    If there is a (S,G) entry in existence, the DR  simply
             restarts the corresponding Entry-timer.
ToP   noToC   RFC2117 - Page 24
        When a PMBR (e.g., a router that connects the PIM-SM region to
        a dense mode region running DVMRP or PIM-DM) receives a packet
        from a source in the dense mode region,  the  router treats  the
        packet as if it were from a directly connected source. A
        separate document will describe  the  details  of
        interoperability.

   2    If the new or previously-existing (S,G) entry's Register-
        Suppression-timer is not running, the data packet is
        encapsulated in a Register message and unicast to the RP
        for that group. The data packet is also forwarded according
        to (S,G) state in the DR if the oif list is not null; since
        a receiver may join the SP-tree while the DR is still
        registering to the RP.

   3    If the (S,G) entry's Register-Suppression-timer is running,
        the data packet is not sent in a Register message, it is
        just forwarded according to the (S,G) oif list.

   When the DR receives a Register-Stop message, it restarts the
   Register-Suppression-timer in the corresponding (S,G) entry(ies) at
   [Register-Suppression-Timeout] seconds. If there is data to be
   registered, the DR may send a null Register (a Register message with
   a zero-length data portion in the inner IP packet) to the RP,
   [Probe-Time] seconds before the Register- Suppression-timer expires,
   to avoid sending occasional bursts of traffic to an RP unnecessarily.

3.3.2 Receiving Register Messages and Sending Register-Stops

   When a router (i.e., the RP) receives a Register message, the router
   does the following:

   1    Decapsulates the data packet, and checks for a
        corresponding (S,G) entry.

        1    If a (S,G) entry with cleared (0) SPT bit exists, and
             the received Register does not have the Null-
             Register-Bit set to 1, the packet is forwarded; and
             the SPT bit is left cleared (0). If the SPT bit is 1,
             the packet is dropped, and Register-Stop messages are
             triggered.  Register-Stops should be rate-limited (in
             an implementation-specific manner) so that no more
             than a few are sent per round trip time. This prevents
             a high datarate stream of packets from triggering a
             large number of Register-Stop messages between the
             time that the first packet is received and the time
             when the source receives the first Register-Stop.
ToP   noToC   RFC2117 - Page 25
        2    If there is no (S,G) entry, but there is a (*,G)
             entry, and the received Register does not have the
             Null-Register-Bit set to 1, the packet is forwarded
             according to the (*,G) entry.

        3    If there is a (*,*,RP) entry but no (*,G) entry, and
             the Register received does not have the Null-
             Register-Bit set to 1, a (*,G) or (S,G) entry is
             created and the oif list is copied from the (*,*,RP)
             entry to the new entry.  The packet is forwarded
             according to the created entry.

        4    If there is no G or (*,*,RP) entry corresponding to G,
             the packet is dropped, and a Register-Stop is
             triggered.

        5    A "Border bit" bit is added to the Register message,
             to facilitate interoperability mechanisms. PMBRs set
             this bit when registering for external sources (see
             Section 2.7).  If the "Border bit" is set in the
             Register, the RP does the following:

             1    If there is no matching (S,G) state, but there
                  exists (*,G) or (*,*,RP) entry, the RP creates a
                  (S,G) entry, with a `PMBR' field.  This field
                  holds the source of the Register (i.e. the outer
                  IP address of the register packet).  The RP
                  triggers a (S,G) join towards the source of the
                  data packet, and clears the SPT bit for the (S,G)
                  entry.  If the received Register is not a `null
                  Register' the packet is forwarded according to
                  the created state. Else,

             2    If the `PMBR' field for the corresponding (S,G)
                  entry matches the source of the Register packet,
                  and the received Register is not a `null
                  Register', the decapsulated packet is forwarded
                  to the oif list of that entry. Else,

             3    If the `PMBR' field for the corresponding (S,G)
                  entry matches the source of the Register packet,
                  the decapsulated packet is forwarded to the oif
                  list of that entry, else

             4    The packet is dropped, and a Register-stop is
                  triggered towards the source of the Register.
ToP   noToC   RFC2117 - Page 26
        The (S,G) Entry-timer is restarted  by  Registers arriving from
        that source to that group.

   2    If the matching (S,G) or (*,G) state contains a null oif
        list, the RP unicasts a Register-Stop message to the source
        of the Register message; in the latter case, the source-
        address field, within the Register-Stop message, is set to
        the wildcard value (all 0's). This message is not processed
        by intermediate routers, hence no (S,G) state is
        constructed between the RP and the source.

   3    If the Register message arrival rate warrants it and there
        is no existing (S,G) entry, the RP sets up a (S,G) route
        entry with the outgoing interface list, excluding iif(S,G),
        copied from the (*,G) outgoing interface list, its SPT-bit
        is initialized to 0. If a (*,G) entry does not exist, but
        there exists a (*,*,RP) entry with the RP corresponding to
        G , the oif list for (S,G) is copied -excluding the iif-
        from that (*,*,RP) entry.

        A timer (Entry-timer) is set for the (S,G) entry and this
        timer is restarted by receipt of data packets for (S,G).
        The (S,G) entry causes the RP to send a Join/Prune message
        for the indicated group towards the source of the register
        message.

        If the (S,G) oif list becomes null, Join/Prune messages
        will not be sent towards the source, S.

3.4 Multicast Data Packet Forwarding

   Processing a multicast data packet involves the following steps:

   1    Lookup route state based on a longest match of the source
        address, and an exact match of the destination address in
        the data packet. If neither S, nor G, find a longest match
        entry, and the RP for the packet's destination group
        address has a corresponding (*,*,RP) entry, then the
        longest match does not require an exact match on the
        destination group address. In summary, the longest match is
        performed in the following order: (1) (S,G), (2) (*,G). If
        neither is matched, then a lookup is performed on (*,*,RP)
        entries.

   2    If the packet arrived on the interface found in the
        matching-entry's iif field, and the oif list is not
        null:
ToP   noToC   RFC2117 - Page 27
        1    Forward the packet to the oif list for that entry
             and restart the Entry-timer if the matching entry is
             (S,G).  Optionally, the (S,G) Entry-timer may be
             restarted by periodic checking of the matching packet
             count.

        2    If the entry is a (S,G) entry with a cleared SPT-bit,
             and a (*,G) or associated (*,*,RP) also exists whose
             incoming interface is different than that for (S,G),
             set the SPT-bit for the (S,G) entry and trigger an
             (S,G) RPT-bit prune towards the RP.

        3    If the source of the packet is a directly-connected
             host and the router is the DR on the receiving
             interface, check the Register-Suppression-timer
             associated with the (S,G) entry. If it is not running,
             then the router encapsulates the data packet in a
             register message and sends it to the RP.

        This covers the common case of a packet arriving on the RPF
        interface to the source or RP and being forwarded to all
        joined branches. It also detects when packets arrive on the
        SP-tree, and triggers their pruning from the RP-tree. If it
        is the DR for the source, it sends data packets
        encapsulated in Registers to the RPs.

   3    If the packet matches to an entry but did not arrive on the
        interface found in the entry's iif field, check the
        SPT-bit of the entry. If the SPT-bit is set, drop the
        packet.  If the SPT-bit is cleared, then lookup the (*,G),
        or (*,*,RP), entry for G. If the packet arrived on the
        iif found in (*,G), or the corresponding (*,*,RP),
        forward the packet to the oif list of the matching
        entry. This covers the case when a data packet matches on a
        (S,G) entry for which the SP-tree has not yet been
        completely established upstream.

   4    If the packet does not match any entry, but the source of
        the data packet is a local, directly-connected host, and
        the router is the DR on a multi-access LAN and has RP-Set
        information, the DR uses the hash function to determine the
        RP associated with the destination group, G. The DR creates
        a (S,G) entry, with the Register-Suppression-timer not
        running, encapsulates the data packet in a Register message
        and unicasts it to the RP.

   5    If the packet does not match to any entry, and it is not a
        local host or the router is not the DR, drop the packet.
ToP   noToC   RFC2117 - Page 28
3.4.1 Data triggered switch to shortest path tree (SP-tree)

   Different criteria can be applied to trigger switching over from the
   RP-based shared tree to source-specific, shortest path trees.

   One proposed example is to do so based on data rate.  For example,
   when a (*,G), or corresponding (*,*,RP), entry is created, a data rate
   counter may be initiated at the last-hop routers.  The counter is
   incremented with every data packet received for directly connected
   members of an SM group, if the longest match is (*,G) or (*,*,RP). If
   and when the data rate for the group exceeds a certain configured
   threshold (t1), the router initiates `source-specific' data rate
   counters for the following data packets. Then, each counter for a
   source, is incremented when packets matching on (*,G), or (*,*,RP),
   are received from that source. If the data rate from the particular
   source exceeds a configured threshold (t2), a (S,G) entry is created
   and a Join/Prune message is sent towards the source.  If the RPF
   interface for (S,G) is not the same as that for (*,G) -or (*,*,RP),
   then the SPT-bit is cleared in the (S,G) entry.

   Other configured rules may be enforced to cause or prevent
   establishment of (S,G) state.

3.5 Assert

   Asserts are used to resolve which of the parallel routers connected to
   a multi-access LAN is responsible for forwarding packets onto the LAN.

3.5.1 Sending Asserts

   The following Assert rules are provided when a multicast packet is
   received on an outgoing multi-access interface "I" of an existing
   (S,G) entry:

   1    Do unicast routing table lookup on source IP address from
        data packet, and send assert on interface "I" for source
        IP address in data packet; include metric preference of
        routing protocol and metric from routing table lookup.

   2    If route is not found, use metric preference of 0x7fffffff
        and metric 0xffffffff.

   When an assert is sent for a (*,G) entry, the first bit in the
   metric preference (the RPT-bit) is set to 1, indicating the data
   packet is routed down the RP-tree.

   Asserts should be rate-limited in an implementation-specific
   manner.
ToP   noToC   RFC2117 - Page 29
3.5.2 Receiving Asserts

   When an Assert is received the router performs a longest match on the
   source and group address in the Assert message. The router checks the
   first bit of the metric preference (RPT-bit).

   1    If the RPT-bit is set, the router first does a match on
        (*,G), or (*,*,RP), entries; if no matching entry is found,
        it ignores the Assert.

   2    If the RPT-bit is not set in the Assert, the router first
        does a match on (S,G) entries; if no matching entry is
        found, the router matches (*,G) or (*,*,RP) entries.

   3.5.2.1 Receiving Asserts on an entry's outgoing interface

   If the interface that received the Assert message is in the oif list
   of the matched entry, then this Assert is processed by this router as
   follows:

   1    If the Assert's RPT-bit is set and the matching entry is
        (*,*,RP), the router creates a (*,G) entry. If the Assert's
        RPT-bit is cleared and the matching entry is (*,G), or
        (*,*,RP), the router creates a (S,G)RPT-bit entry.
        Otherwise, no new entry is created in response to the
        Assert.

   2    The router then compares the metric values received in the
        Assert with the metric values associated with the matched
        entry. The RPT-bit and metric preference (in that order)
        are treated as the high-order part of an Assert metric
        comparison. If the value in the Assert is less than the
        router's value (with ties broken by the IP address, where
        higher IP address wins), delete the interface from the
        entry.  When the deletion occurs for a (*,G) or (*,*,RP)
        entry , the interface is also deleted from any associated
        (S,G)RPT-bit or (*,G) entries, respectively. The Entry-
        timer for the affected entries is restarted.

   3    If the router has won the election the router keeps the
        interface in its outgoing interface list. It acts as the
        forwarder for the LAN.

   The winning router sends an Assert message containing its own metric
   to that outgoing interface. This will cause other routers on the LAN
   to prune that interface from their route entries. The winning router
   sets the RPT-bit in the Assert message if a (*,G) or (S,G)RPT-bit
   entry was matched.
ToP   noToC   RFC2117 - Page 30
   3.5.2.2 Receiving Asserts on an entry's incoming interface

   If the Assert arrived on the incoming interface of an existing (S,G),
   (*,G), or (*,*,RP) entry, the Assert is processed as follows.  If the
   Assert message does not match the entry, exactly, it is ignored; i.e,
   longest-match is not used in this case. If the Assert message does
   match exactly, then:

   1    Downstream routers will select the upstream router with the
        smallest metric preference and metric as their RPF
        neighbor. If two metrics are the same, the highest IP
        address is chosen to break the tie. This is important so
        that downstream routers send subsequent Joins/Prunes (in
        SM) to the correct neighbor. An Assert-timer is initiated
        when changing the RPF neighbor to the Assert winner.  When
        the timer expires, the router resets its RPF neighbor
        according to its unicast routing tables to capture network
        dynamics and router failures.

   2    If the downstream routers have downstream members, and if
        the Assert caused the RPF neighbor to change, the
        downstream routers must trigger a Join/Prune message to
        inform the upstream router that packets are to be forwarded
        on the multi-access network.

3.6 Candidate-RP-Advertisements and Bootstrap messages

   Candidate-RP-Advertisements (C-RP-Advs) are periodic PIM messages
   unicast to the BSR by those routers that are configured as
   Candidate-RPs (C-RPs).

   Bootstrap messages are periodic PIM messages originated by the
   Bootstrap router (BSR) within a domain, and forwarded hop-by-hop to
   distribute the current RP-set to all routers in that domain.

   The Bootstrap messages also support a simple mechanism by which the
   Candidate BSR (C-BSR) with the highest BSR-priority and IP address
   (referred to as the preferred BSR) is elected as the BSR for the
   domain.  We recommend that each router configured as a C-RP also be
   configured as a C-BSR. Sections 3.6.2 and 3.6.3 describe the combined
   function of Bootstrap messages as the vehicle for BSR election and
   RP-Set distribution.

   A Finite State Machine description of the BSR election and RP- Set
   distribution mechanisms is included in Appendix II.
ToP   noToC   RFC2117 - Page 31
3.6.1 Sending Candidate-RP-Advertisements

   C-RPs periodically unicast C-RP-Advs to the BSR for that domain.  The
   interval for sending these messages is subject to local configuration
   at the C-RP.

   Candidate-RP-Advertisements carry group address and group mask
   fields.  This enables the advertising router to limit the
   advertisement to certain prefixes or scopes of groups.  The
   advertising router may enforce this scope acceptance when receiving
   Registers or Join/Prune messages.  C-RPs should send C-RP-Adv
   messages with the Authoritative bit cleared.

3.6.2 Receiving C-RP-Advs and Originating Bootstrap

   Upon receiving a C-RP-Adv, a router does the following:

   1    If the router is not the elected BSR, it ignores the
        message, else

   2    The BSR adds the RP address to its local pool of candidate
        RPs, according to the associated group prefix(es) in the
        C-RP-Adv message. The Holdtime in the C-RP-Adv message is
        also stored with the corresponding RP, to be included later
        in the Bootstrap message. The BSR may apply a local
        policy to limit the number of Candidate RPs included
        in the Bootstrap message.  The BSR may override the prefix
        indicated in a C-RP-Adv unless the Authoritative bit in the
        C-RP-Adv is set.

   The BSR keeps an RP-timer per RP in its local RP-set.  The RP- timer
   is initialized to the Holdtime in the RP's C-RP-Adv. When the timer
   expires, the corresponding RP is removed from the RP- set.  The RP-
   timer is restarted by the C-RP-Advs from the corresponding RP.

   The BSR also uses its Bootstrap-timer to periodically send Bootstrap
   messages.  In particular, when the Bootstrap-timer expires, the BSR
   originates an Bootstrap message on each of its PIM interfaces.  The
   message is sent with a TTL of 1 to the `ALL-PIM-ROUTERS' group. In
   steady state, the BSR originates Bootstrap messages periodically. At
   startup, the Bootstrap-timer is initialized to [Bootstrap-Timeout],
   causing the first Bootstrap message to be originated only when and if
   the timer expires. For timer details, see Section 3.6.3. A DR
   unicasts a Bootstrap message to each new PIM neighbor, i.e., after
   the DR receives the neighbor's Hello message (it does so even if the
   new neighbor becomes the DR).
ToP   noToC   RFC2117 - Page 32
   The Bootstrap message is subdivided into sets of {group- prefix,RP-
   Count,RP-addresses}.  For each RP-address, the corresponding Holdtime
   is included in the "RP-Holdtime" field.  The format of the Bootstrap
   message allows `semantic fragmentation', if the length of the
   original Bootstrap message exceeds the packet maximum boundaries (see
   Section 4). However, we recommend against configuring a large number
   of routers as C-RPs, to reduce the semantic fragmentation required.

3.6.3 Receiving and Forwarding Bootstrap

   Each router keeps a Bootstrap-timer, initialized to [Bootstrap-
   Timeout] at startup.

   When a router receives Bootstrap message sent to `ALL-PIM- ROUTERS'
   group, it performs the following:

   1    If the message was not sent by the RPF neighbor towards the
        BSR address included, the message is dropped. Else

   2    If the included BSR is not preferred over, and not equal
        to, the currently active BSR:


        1    If the Bootstrap-timer has not yet expired, or if the
             receiving router is a C-BSR, then the Bootstrap
             message is dropped. Else

        2    If the Bootstrap-timer has expired and the receiving
             router is not a C-BSR, the receiving router stores the
             RP-Set and BSR address and priority found in the
             message, and restarts the timer by setting it to
             [Bootstrap-Timeout]. The Bootstrap message is then
             forwarded out all PIM interfaces, excluding the one
             over which the message arrived, to `ALL-PIM-ROUTERS'
             group, with a TTL of 1.

        3    If the Bootstrap message includes a BSR address that is
             preferred over, or equal to, the currently active BSR, the
             router restarts its Bootstrap-timer at [Bootstrap-Timeout]
             seconds. and stores the BSR address and RP-Set information.

             The Bootstrap message is then forwarded out all PIM
             interfaces, excluding the one over which the message
             arrived, to `ALL-PIM-ROUTERS' group, with a TTL of 1.
ToP   noToC   RFC2117 - Page 33
        4    If the receiving router has no current RP set information
             and the Bootstrap was unicast to it from a directly
             connected neighbor, the router stores the information as
             its new RP-set.  This covers the startup condition when a
             newly booted router obtains the RP-Set and BSR address from
             its DR.

   When a router receives a new RP-Set, it checks if each of the RPs
   referred to by existing state (i.e., by (*,G), (*,*,RP), or
   (S,G)RPT-bit entries) is in the new RP-Set. If an RP is not in the new
   RP-set, that RP is considered unreachable and the hash algorithm (see
   below) is re-performed for each group with locally active state that
   previously hashed to that RP. This will cause those groups to be
   distributed among the remaining RPs. When the new RP-Set contains a
   new RP, the value of the new RP is calculated for each group covered
   by that C-RP's Group- prefix.  Any group for which the new RP's value
   is greater than the previously active RP's value is switched over to
   the new RP.

3.7 Hash Function

   The hash function is used by all routers within a domain, to map a
   group to one of the C-RPs from the RP-Set. For a particular group, G,
   the hash function uses only those C-RPs whose Group- prefix covers G.
   The algorithm takes as input the group address, and the addresses of
   the Candidate RPs, and gives as output one RP address to be used.

   The protocol requires that all routers hash to the same RP within a
   domain (except for transients). The following hash function must be
   used in each router:


   1    For each RP address C(i) in the RP-Set, whose Group-prefix
        covers G, compute a value:

   Value(G,M,C(i))=
   (1103515245 * ((1103515245 * (G&M)+12345) XOR C(i)) + 12345) mod 2^31

         where M is a hash-mask included in Bootstrap messages.
         This hash-mask allows a small number of consecutive groups
         (e.g., 4) to always hash to the same RP.  For instance,
         hierarchically-encoded data can be sent on consecutive
         group addresses to get the same delay and fate-sharing
         characteristics.

   2    The candidate with the highest resulting value is then
        chosen as the RP for that group, and its identity and hash
        value are stored with the entry created.
ToP   noToC   RFC2117 - Page 34
        Ties between C-RPs having the same hash value, are broken
        in advantage of the highest address.

   The hash function algorithm is invoked by a DR, upon reception of a
   packet, or IGMP membership indication, for a group, for which the DR
   has no entry. It is invoked by any router that has (*,*,RP) state when
   a packet is received for which there is no corresponding (S,G) or
   (*,G) entry.  Furthermore, the hash function is invoked by all routers
   upon receiving a (*,G) or (*,*,RP) Join/Prune message.

3.8 Processing Timer Events

   In this subsection, we enumerate all timers that have been discussed
   or implied. Since some critical timer events are not associated with
   the receipt or sending of messages, they are not fully covered by
   earlier subsections.

   Timers are implemented in an implementation-specific manner. For
   example, a timer may count up or down, or may simply expire at a
   specific time. Setting a timer to a value T means that it will expire
   after T seconds.

3.8.1 Timers related to tree maintenance

   Each (S,G), (*,G), and (*,*,RP) route entry has multiple timers
   associated with it: one for each interface in the outgoing interface
   list, one for the multicast routing entry itself, and one optional
   Join/Prune-Suppression-Timer. Each (S,G) and (*,G) entry also has an
   Assert-timer and a Random-Delay-Join-Timer for use with Asserts.  In
   addition, DR's have a Register- Suppression-timer for each (S,G) entry
   and every router has a single Join/Prune-timer. (A router may
   optionally keep separate Join/Prune-timers for different interfaces or
   route entries if different Join/Prune periods are desired.)

   *    [Join/Prune-Timer] This timer is used for periodically
        sending aggregate Join/Prune messages.  To avoid
        synchronization among routers booting simultaneously, it is
        initially set to a random value between 1 and [Join/Prune-
        Period].  When it expires, the timer is immediately
        restarted to [Join/Prune-Period]. A Join/Prune message is
        then sent out each interface.  This timer should not be
        restarted by other events.

   *    [Join/Prune-Suppression-Timer (kept per route entry)] A
        route entry's (optional) Join/Prune-Suppression-Timer may
        be used to suppress duplicate joins from multiple
        downstream routers on the same LAN. When a Join message is
        received from a neighbor on the entry's incoming interface
ToP   noToC   RFC2117 - Page 35
        in which the included Holdtime is higher than the router's
        own [Join/Prune-Holdtime] (with ties broken by higher IP
        address), the timer is set to [Join/Prune-Suppression-
        Timeout], with some random jitter introduced to avoid
        synchronization of triggered Join/Prune messages on
        expiration. (The random timeout value must be < 1.5 *
        [Join/Prune-Period] to prevent losing data after 2 dropped
        Join/Prunes.)  The timer is restarted every time a
        subsequent Join/Prune message (with higher Holdtime/IP
        address) for the entry is received on its incoming
        interface.  While the timer is running, Join/Prune messages
        for the entry are not sent.  This timer is idle (not
        running) for point-to-point links.

   *    [Oif-Timer (kept per oif for each route entry)] A timer for
        each oif of a route entry is used to time out that oif.
        Because some of the outgoing interfaces in an (S,G) entry
        are copied from the (*,G) outgoing interface list, they may
        not have explicit (S,G) join messages from some of the
        downstream routers (i.e., where members are joining to the
        (*,G) tree only). Thus, when an Oif-timer is restarted in a
        (*,G) entry, the Oif-timer is restarted for that interface
        in each existing (S,G) entry whose oif list contains that
        interface. The same rule applies to (*,G) and (S,G) entries
        when restarting an Oif-timer on a (*,*,RP) entry.

        The following table shows its usage when first adding the
        oif to the entry's oiflist, when it should be restarted
        (unless it is already higher), and when it should be
        decreased (unless it is already lower).
ToP   noToC   RFC2117 - Page 36
   Set to                   | When                         | Applies  to
   -------------------------|------------------------------|------------
   included Holdtime        | adding oif off Join/Prune    | (S,G) (*,G)
                            |                              | (*,*,RP)



   Increased (only) to      | When                         |  Applies to
   -------------------------|------------------------------|------------
   included  Holdtime       | received Join/Prune          | (S,G) (*,G)
                            |                              | (*,*,RP)
                            |                              |
   Value of (*,*,RP)        | (*,*,RP) oif-timer restarted | (S,G) (*,G)
      oif-timer             |                              |
                            |                              |
   Value of (*,G)           | (*,G) oif-timer restarted    | (S,G)
      oif-timer             |                              |


   Decreased (only) to      |  When                        | Applies  to
   -------------------------|------------------------------|------------
   Oif-Deletion-Delay       | prune received               | (S,G) (*,G)


        When the timer expires, the oif is removed from the oiflist
        if there are no directly-connected members. When deleted,
        the oif is also removed in any associated (S,G) or (*,G)
        entries.

   *    [Entry-Timer (kept per route entry)] A timer for each route
        entry is used to time out that entry. The following table
        summarizes its usage when first adding the oif to the
        entry's oiflist, and when it should be restarted (unless it
        is already higher).
ToP   noToC   RFC2117 - Page 37
   Set to                |  When                    | Applies to
   ----------------------|--------------------------|------------
   [Data- Timeout]       | created off data packet  | (S,G)
                         |                          |
   included Holdtime     | created off Join/Prune   | (S,G) (*,G)
   (*,*,RP)


   Increased  (only)  to |  When                    | Applies to
   ----------------------|--------------------------|------------
   [Data-Timeout]        | receiving  data  packets | (S,G)no RPT-bit
                         |                          |
   Value of oif-timer    | any oif-timer restarted  | (S,G)RPT-bit (*,G)
                         |                          | (*,*,RP)
                         |                          |
   [Assert-Timeout]      | assert received          | (S,G)RPT-bit
                         |                          | (*,G)w/null oif


        When the timer expires, the route entry is deleted; if the
        entry is a (*,G) or (*,*,RP) entry, all associated
        (S,G)RPT-bit entries are also deleted.

   *    [Register-Suppression-Timer (kept per (S,G) route entry)]
        An (S,G) route entry's Register-Suppression-Timer is used
        to suppress registers when the RP is receiving data packets
        natively.  When a Register-Stop message for the entry is
        received from the RP, the timer is set to a random value in
        the range 0.5 * [Register-Suppression-Timeout] to 1.5 *
        [Register-Suppression-Timeout]. While the timer is running,
        Registers for that entry will be suppressed.  If null
        registers are used, a null register is sent [Probe-Time]
        seconds before the timer expires.

   *    [Assert-Timer (per (S,G) or (*,G) route entry)] The
        Assert-Timer for an (S,G) or (*,G) route entry is used for
        timing out Asserts received. When an Assert is received and
        the RPF neighbor is changed to the Assert winner, the
        Assert-Timer is set to [Assert-Timeout], and is restarted
        to this value every time a subsequent Assert for the entry
        is received on its incoming interface.  When the timer
        expires, the router resets its RPF neighbor according to
        its unicast routing table.

   *    [Random-Delay-Join-Timer (per (S,G) or (*,G) route entry)]
        The Random-Delay-Join-Timer for an (S,G) or (*,G) route
        entry is used to prevent synchronization among downstream
        routers on a LAN when their RPF neighbor changes. When the
ToP   noToC   RFC2117 - Page 38
        RPF neighbor changes, this timer is set to a random value
        between 0 and [Random-Delay-Join-Timeout] seconds. When the
        timer expires, a triggered Join/Prune message is sent for
        the entry unless its Join/Prune-Suppression-Timer is
        running.

3.8.2 Timers relating to neighbor discovery

   *    [Hello-Timer] This timer is used to periodically send Hello
        messages.  To avoid synchronization among routers booting
        simultaneously, it is initially set to a random value
        between 1 and [Hello-Period]. When it expires, the timer is
        immediately restarted to [Hello-Period]. A Hello message is
        then sent out each interface.  This timer should not be
        restarted by other events.

   *    [Neighbor-Timer (kept per neighbor)] A Neighbor-Timer for
        each neighbor is used to time out the neighbor state. When
        a Hello message is received from a new neighbor, the timer
        is initially set to the Holdtime included in the Hello
        message (which is equal to the neighbor's value of [Hello-
        Holdtime]).  Every time a subsequent Hello is received from
        that neighbor, the timer is restarted to the Holdtime in
        the Hello.  When the timer expires, the neighbor state is
        removed.

3.8.3 Timers relating to RP information

   *    [C-RP-Adv-Timer (C-RP's only)] Routers configured as
        candidate RP's use this timer to periodically send C-RP-Adv
        messages. To avoid synchronization among routers booting
        simultaneously, the timer is initially set to a random
        value between 1 and [C-RP-Adv-Period]. When it expires, the
        timer is immediately restarted to [C-RP-Adv-Period]. A C-
        RP-Adv message is then sent to the elected BSR. This timer
        should not be restarted by other events.

   *    [RP-Timer (BSR only, kept per RP in RP-Set)] The BSR uses a
        timer per RP in the RP-Set to monitor liveness. When a C-RP
        is added to the RP-Set, its timer is set to the Holdtime
        included in the C-RP-Adv message from that C-RP (which is
        equal to the C-RP's value of [RP-Holdtime]). Every time a
        subsequent C-RP-Adv is received from that RP, its timer is
        restarted to the Holdtime in the C-RP-Adv. When the timer
        expires, the RP is removed from the RP-Set included in
        Bootstrap messages.
ToP   noToC   RFC2117 - Page 39
   *    [Bootstrap-Timer] This timer is used by the BSR to
        periodically originate Bootstrap messages, and by other
        routers to time out the BSR (see 3.6.3).  This timer is
        initially set to [Bootstrap-Timeout].  A C-BSR restarts
        this timer to [Bootstrap-Timeout] upon receiving a Bootstrap
        message from a preferred router, and originates an Bootstrap
        message and restarts the timer to [Bootstrap-Period] when it
        expires.  Routers not configured as C-BSR's restart this
        timer to [Bootstrap-Timeout] upon receiving a Bootstrap
        message from the elected or a more preferred BSR, and ignore
        Bootstrap messages from non-preferred C-BSRs while it is
        running.

3.8.4 Default timer values

   Most of the default timeout values for state information are 3.5
   times the refresh period. For example, Hellos refresh Neighbor state
   and the default Hello-timer period is 30 seconds, so a default
   Neighbor-timer duration of 105 seconds is included in the Holdtime
   field of the Hellos.  In order to improve convergence, however, the
   default timeout value for information related to RP liveness and
   Bootstrap messages is 2.5 times the refresh period.

   In this version of the spec, we suggest particular numerical timer
   settings.  A future version of the specification will specify a
   mechanism for timer values to be scaled based upon observed network
   parameters.

   *    [Join/Prune-Period] This is the interval between
        sending Join/Prune messages. {Default: 60 seconds.} This
        value may be set to take into account such things as the
        configured bandwidth and expected average number of
        multicast route entries for the attached network or link
        (e.g., the period would be longer for lower-speed links, or
        for routers in the center of the network that expect to
        have a larger number of entries ). In addition, a router
        could modify this value (and corresponding Join/Prune-
        Holdtime value) if the number of route entries changes
        significantly (e.g., by an order of magnitude).  For
        example, given a default minimum Join/Prune-Period value,
        if the number of route entries with a particular iif
        increases from N to N*100, the router could increase its
        Join/Prune-Period (and Join/Prune-Holdtime), for that
        interface, by a factor of 10; and if/when the number of
        entries decreases back to N, the Join/Prune-Period (and
        Join/Prune-Holdtime) could be decreased to its previous
        value. If the Join/Prune-Period is modified, these changes
        should be made relatively infrequently and the router
ToP   noToC   RFC2117 - Page 40
        should continue to refresh at its previous Join/Prune-
        Period for at least Join/Prune-Holdtime, in order to allow
        the upstream router to adapt.

   *    [Join-Prune Holdtime] This is the Holdtime specified in
        Join/Prune messages, and is used to time out oifs. This
        should be set to 3.5 * [Join/Prune-Period]. {Default: 210
        seconds.}

   *    [Join/Prune-Suppression-Timeout] This is the mean
        interval between receiving a Join/Prune with a higher
        Holdtime (with ties broken by higher IP addres) and
        allowing duplicate Join/Prunes to be sent again. This
        should be set to approximately 1.25 * [Join/Prune-Period].
        {Default: 75 seconds. }

   *    [Data-Timeout] This is the time after which (S,G) state
        for a silent source will be deleted.  {Default: 210
        seconds.}

   *    [Register-Suppression-Timeout] This is the mean
        interval between receiving a Register-Stop and allowing
        Registers to be sent again.  A lower value means more
        frequent register bursts at RP, while a higher value means
        longer join latency for new receivers.  {Default: 60
        seconds.} (Note that if null Registers are sent [Probe-
        Time] seconds before the timeout, register bursts are
        prevents, and [Register-Suppression-Timeout] may be lowered
        to decrease join latency.)

   *    [Probe-Time] When null Registers are used, this is the
        time between sending a null Register and the Register-
        Suppression-Timer expiring unless it is restarted by
        receiving a Register-Stop. Thus, a null Register would be
        sent when the Register-Suppression-Timer reaches this
        value. {Default: 5 seconds.}

   *    [Assert-Timeout] This is the interval between the last
        time an Assert is received, and the time at which the
        assert is timed out. {Default: 180 seconds.}

   *    [Random-Delay-Join-Timeout] This is the maximum
        interval between the time when the RPF neighbor changes,
        and the time at which a triggered Join/Prune message is
        sent.  {Default: 4.5 seconds.}

   *    [Hello-Period] This is the interval between sending
        Hello messages. {Default: 30 seconds.}
ToP   noToC   RFC2117 - Page 41
   *    [Hello-Holdtime] This is the Holdtime specified in
        Hello messages, after which neighbors will time out their
        neighbor entries for the router. This should be set to 3.5
        * [Hello-Period]. {Default: 105 seconds.}

   *    [C-RP-Adv-Period] For C-RPs, this is the interval
        between sending C-RP-Adv messages. {Default: 60 seconds.}

   *    [RP-Holdtime] For C-RPs, this is the Holdtime specified
        in C-RP-Adv messages, and is used by the BSR to time out
        RPs. This should be set to 2.5 * [C-RP-Adv-Period].
        {Default: 150 seconds.}

   *    [Bootstrap-Period] At the elected BSR, this is the
        interval between originating Bootstrap messages, and should
        be equal to 60 seconds.


   *    [Bootstrap-Timeout] This is the time after which the
        elected BSR will be assumed unreachable when Bootstrap
        messages are not received from it. This should be set to
        2.5 * [Bootstrap-Period]. {Default: 150 seconds.}


(next page on part 3)

Next Section