4. Chunk Specifications This chapter defines the standard types of PNG chunks. 4.1. Critical chunks All implementations must understand and successfully render the standard critical chunks. A valid PNG image must contain an IHDR chunk, one or more IDAT chunks, and an IEND chunk. 4.1.1. IHDR Image header The IHDR chunk must appear FIRST. It contains: Width: 4 bytes Height: 4 bytes Bit depth: 1 byte Color type: 1 byte Compression method: 1 byte Filter method: 1 byte Interlace method: 1 byte
Width and height give the image dimensions in pixels. They are 4-byte integers. Zero is an invalid value. The maximum for each is (2^31)-1 in order to accommodate languages that have difficulty with unsigned 4-byte values. Bit depth is a single-byte integer giving the number of bits per sample or per palette index (not per pixel). Valid values are 1, 2, 4, 8, and 16, although not all values are allowed for all color types. Color type is a single-byte integer that describes the interpretation of the image data. Color type codes represent sums of the following values: 1 (palette used), 2 (color used), and 4 (alpha channel used). Valid values are 0, 2, 3, 4, and 6. Bit depth restrictions for each color type are imposed to simplify implementations and to prohibit combinations that do not compress well. Decoders must support all legal combinations of bit depth and color type. The allowed combinations are: Color Allowed Interpretation Type Bit Depths 0 1,2,4,8,16 Each pixel is a grayscale sample. 2 8,16 Each pixel is an R,G,B triple. 3 1,2,4,8 Each pixel is a palette index; a PLTE chunk must appear. 4 8,16 Each pixel is a grayscale sample, followed by an alpha sample. 6 8,16 Each pixel is an R,G,B triple, followed by an alpha sample. The sample depth is the same as the bit depth except in the case of color type 3, in which the sample depth is always 8 bits. Compression method is a single-byte integer that indicates the method used to compress the image data. At present, only compression method 0 (deflate/inflate compression with a 32K sliding window) is defined. All standard PNG images must be compressed with this scheme. The compression method field is provided for possible future expansion or proprietary variants. Decoders must check this byte and report an error if it holds
an unrecognized code. See Deflate/Inflate Compression (Chapter 5) for details. Filter method is a single-byte integer that indicates the preprocessing method applied to the image data before compression. At present, only filter method 0 (adaptive filtering with five basic filter types) is defined. As with the compression method field, decoders must check this byte and report an error if it holds an unrecognized code. See Filter Algorithms (Chapter 6) for details. Interlace method is a single-byte integer that indicates the transmission order of the image data. Two values are currently defined: 0 (no interlace) or 1 (Adam7 interlace). See Interlaced data order (Section 2.6) for details. 4.1.2. PLTE Palette The PLTE chunk contains from 1 to 256 palette entries, each a three-byte series of the form: Red: 1 byte (0 = black, 255 = red) Green: 1 byte (0 = black, 255 = green) Blue: 1 byte (0 = black, 255 = blue) The number of entries is determined from the chunk length. A chunk length not divisible by 3 is an error. This chunk must appear for color type 3, and can appear for color types 2 and 6; it must not appear for color types 0 and 4. If this chunk does appear, it must precede the first IDAT chunk. There must not be more than one PLTE chunk. For color type 3 (indexed color), the PLTE chunk is required. The first entry in PLTE is referenced by pixel value 0, the second by pixel value 1, etc. The number of palette entries must not exceed the range that can be represented in the image bit depth (for example, 2^4 = 16 for a bit depth of 4). It is permissible to have fewer entries than the bit depth would allow. In that case, any out-of-range pixel value found in the image data is an error. For color types 2 and 6 (truecolor and truecolor with alpha), the PLTE chunk is optional. If present, it provides a suggested set of from 1 to 256 colors to which the truecolor image can be quantized if the viewer cannot display truecolor directly. If PLTE is not present, such a viewer will need to select colors on its own, but it is often preferable for this
to be done once by the encoder. (See Recommendations for Encoders: Suggested palettes, Section 9.5.) Note that the palette uses 8 bits (1 byte) per sample regardless of the image bit depth specification. In particular, the palette is 8 bits deep even when it is a suggested quantization of a 16-bit truecolor image. There is no requirement that the palette entries all be used by the image, nor that they all be different. 4.1.3. IDAT Image data The IDAT chunk contains the actual image data. To create this data: * Begin with image scanlines represented as described in Image layout (Section 2.3); the layout and total size of this raw data are determined by the fields of IHDR. * Filter the image data according to the filtering method specified by the IHDR chunk. (Note that with filter method 0, the only one currently defined, this implies prepending a filter type byte to each scanline.) * Compress the filtered data using the compression method specified by the IHDR chunk. The IDAT chunk contains the output datastream of the compression algorithm. To read the image data, reverse this process. There can be multiple IDAT chunks; if so, they must appear consecutively with no other intervening chunks. The compressed datastream is then the concatenation of the contents of all the IDAT chunks. The encoder can divide the compressed datastream into IDAT chunks however it wishes. (Multiple IDAT chunks are allowed so that encoders can work in a fixed amount of memory; typically the chunk size will correspond to the encoder's buffer size.) It is important to emphasize that IDAT chunk boundaries have no semantic significance and can occur at any point in the compressed datastream. A PNG file in which each IDAT chunk contains only one data byte is legal, though remarkably wasteful of space. (For that matter, zero-length IDAT chunks are legal, though even more wasteful.) See Filter Algorithms (Chapter 6) and Deflate/Inflate Compression (Chapter 5) for details.
4.1.4. IEND Image trailer The IEND chunk must appear LAST. It marks the end of the PNG datastream. The chunk's data field is empty. 4.2. Ancillary chunks All ancillary chunks are optional, in the sense that encoders need not write them and decoders can ignore them. However, encoders are encouraged to write the standard ancillary chunks when the information is available, and decoders are encouraged to interpret these chunks when appropriate and feasible. The standard ancillary chunks are listed in alphabetical order. This is not necessarily the order in which they would appear in a file. 4.2.1. bKGD Background color The bKGD chunk specifies a default background color to present the image against. Note that viewers are not bound to honor this chunk; a viewer can choose to use a different background. For color type 3 (indexed color), the bKGD chunk contains: Palette index: 1 byte The value is the palette index of the color to be used as background. For color types 0 and 4 (grayscale, with or without alpha), bKGD contains: Gray: 2 bytes, range 0 .. (2^bitdepth)-1 (For consistency, 2 bytes are used regardless of the image bit depth.) The value is the gray level to be used as background. For color types 2 and 6 (truecolor, with or without alpha), bKGD contains: Red: 2 bytes, range 0 .. (2^bitdepth)-1 Green: 2 bytes, range 0 .. (2^bitdepth)-1 Blue: 2 bytes, range 0 .. (2^bitdepth)-1 (For consistency, 2 bytes per sample are used regardless of the image bit depth.) This is the RGB color to be used as background.
When present, the bKGD chunk must precede the first IDAT chunk, and must follow the PLTE chunk, if any. See Recommendations for Decoders: Background color (Section 10.7). 4.2.2. cHRM Primary chromaticities and white point Applications that need device-independent specification of colors in a PNG file can use the cHRM chunk to specify the 1931 CIE x,y chromaticities of the red, green, and blue primaries used in the image, and the referenced white point. See Color Tutorial (Chapter 14) for more information. The cHRM chunk contains: White Point x: 4 bytes White Point y: 4 bytes Red x: 4 bytes Red y: 4 bytes Green x: 4 bytes Green y: 4 bytes Blue x: 4 bytes Blue y: 4 bytes Each value is encoded as a 4-byte unsigned integer, representing the x or y value times 100000. For example, a value of 0.3127 would be stored as the integer 31270. cHRM is allowed in all PNG files, although it is of little value for grayscale images. If the encoder does not know the chromaticity values, it should not write a cHRM chunk; the absence of a cHRM chunk indicates that the image's primary colors are device-dependent. If the cHRM chunk appears, it must precede the first IDAT chunk, and it must also precede the PLTE chunk if present. See Recommendations for Encoders: Encoder color handling (Section 9.3), and Recommendations for Decoders: Decoder color handling (Section 10.6).
4.2.3. gAMA Image gamma The gAMA chunk specifies the gamma of the camera (or simulated camera) that produced the image, and thus the gamma of the image with respect to the original scene. More precisely, the gAMA chunk encodes the file_gamma value, as defined in Gamma Tutorial (Chapter 13). The gAMA chunk contains: Image gamma: 4 bytes The value is encoded as a 4-byte unsigned integer, representing gamma times 100000. For example, a gamma of 0.45 would be stored as the integer 45000. If the encoder does not know the image's gamma value, it should not write a gAMA chunk; the absence of a gAMA chunk indicates that the gamma is unknown. If the gAMA chunk appears, it must precede the first IDAT chunk, and it must also precede the PLTE chunk if present. See Gamma correction (Section 2.7), Recommendations for Encoders: Encoder gamma handling (Section 9.2), and Recommendations for Decoders: Decoder gamma handling (Section 10.5). 4.2.4. hIST Image histogram The hIST chunk gives the approximate usage frequency of each color in the color palette. A histogram chunk can appear only when a palette chunk appears. If a viewer is unable to provide all the colors listed in the palette, the histogram may help it decide how to choose a subset of the colors for display. The hIST chunk contains a series of 2-byte (16 bit) unsigned integers. There must be exactly one entry for each entry in the PLTE chunk. Each entry is proportional to the fraction of pixels in the image that have that palette index; the exact scale factor is chosen by the encoder. Histogram entries are approximate, with the exception that a zero entry specifies that the corresponding palette entry is not used at all in the image. It is required that a histogram entry be nonzero if there are any pixels of that color.
When the palette is a suggested quantization of a truecolor image, the histogram is necessarily approximate, since a decoder may map pixels to palette entries differently than the encoder did. In this situation, zero entries should not appear. The hIST chunk, if it appears, must follow the PLTE chunk, and must precede the first IDAT chunk. See Rationale: Palette histograms (Section 12.14), and Recommendations for Decoders: Suggested-palette and histogram usage (Section 10.10). 4.2.5. pHYs Physical pixel dimensions The pHYs chunk specifies the intended pixel size or aspect ratio for display of the image. It contains: Pixels per unit, X axis: 4 bytes (unsigned integer) Pixels per unit, Y axis: 4 bytes (unsigned integer) Unit specifier: 1 byte The following values are legal for the unit specifier: 0: unit is unknown 1: unit is the meter When the unit specifier is 0, the pHYs chunk defines pixel aspect ratio only; the actual size of the pixels remains unspecified. Conversion note: one inch is equal to exactly 0.0254 meters. If this ancillary chunk is not present, pixels are assumed to be square, and the physical size of each pixel is unknown. If present, this chunk must precede the first IDAT chunk. See Recommendations for Decoders: Pixel dimensions (Section 10.2). 4.2.6. sBIT Significant bits To simplify decoders, PNG specifies that only certain sample depths can be used, and further specifies that sample values should be scaled to the full range of possible values at the sample depth. However, the sBIT chunk is provided in order to store the original number of significant bits. This allows
decoders to recover the original data losslessly even if the data had a sample depth not directly supported by PNG. We recommend that an encoder emit an sBIT chunk if it has converted the data from a lower sample depth. For color type 0 (grayscale), the sBIT chunk contains a single byte, indicating the number of bits that were significant in the source data. For color type 2 (truecolor), the sBIT chunk contains three bytes, indicating the number of bits that were significant in the source data for the red, green, and blue channels, respectively. For color type 3 (indexed color), the sBIT chunk contains three bytes, indicating the number of bits that were significant in the source data for the red, green, and blue components of the palette entries, respectively. For color type 4 (grayscale with alpha channel), the sBIT chunk contains two bytes, indicating the number of bits that were significant in the source grayscale data and the source alpha data, respectively. For color type 6 (truecolor with alpha channel), the sBIT chunk contains four bytes, indicating the number of bits that were significant in the source data for the red, green, blue and alpha channels, respectively. Each depth specified in sBIT must be greater than zero and less than or equal to the sample depth (which is 8 for indexed-color images, and the bit depth given in IHDR for other color types). A decoder need not pay attention to sBIT: the stored image is a valid PNG file of the sample depth indicated by IHDR. However, if the decoder wishes to recover the original data at its original precision, this can be done by right-shifting the stored samples (the stored palette entries, for an indexed- color image). The encoder must scale the data in such a way that the high-order bits match the original data. If the sBIT chunk appears, it must precede the first IDAT chunk, and it must also precede the PLTE chunk if present. See Recommendations for Encoders: Sample depth scaling (Section 9.1) and Recommendations for Decoders: Sample depth rescaling (Section 10.4).
4.2.7. tEXt Textual data Textual information that the encoder wishes to record with the image can be stored in tEXt chunks. Each tEXt chunk contains a keyword and a text string, in the format: Keyword: 1-79 bytes (character string) Null separator: 1 byte Text: n bytes (character string) The keyword and text string are separated by a zero byte (null character). Neither the keyword nor the text string can contain a null character. Note that the text string is not null-terminated (the length of the chunk is sufficient information to locate the ending). The keyword must be at least one character and less than 80 characters long. The text string can be of any length from zero bytes up to the maximum permissible chunk size less the length of the keyword and separator. Any number of tEXt chunks can appear, and more than one with the same keyword is permissible. The keyword indicates the type of information represented by the text string. The following keywords are predefined and should be used where appropriate: Title Short (one line) title or caption for image Author Name of image's creator Description Description of image (possibly long) Copyright Copyright notice Creation Time Time of original image creation Software Software used to create the image Disclaimer Legal disclaimer Warning Warning of nature of content Source Device used to create the image Comment Miscellaneous comment; conversion from GIF comment For the Creation Time keyword, the date format defined in section 5.2.14 of RFC 1123 is suggested, but not required [RFC-1123]. Decoders should allow for free-format text associated with this or any other keyword. Other keywords may be invented for other purposes. Keywords of general interest can be registered with the maintainers of the PNG specification. However, it is also permitted to use private unregistered keywords. (Private keywords should be
reasonably self-explanatory, in order to minimize the chance that the same keyword will be used for incompatible purposes by different people.) Both keyword and text are interpreted according to the ISO 8859-1 (Latin-1) character set [ISO-8859]. The text string can contain any Latin-1 character. Newlines in the text string should be represented by a single linefeed character (decimal 10); use of other control characters in the text is discouraged. Keywords must contain only printable Latin-1 characters and spaces; that is, only character codes 32-126 and 161-255 decimal are allowed. To reduce the chances for human misreading of a keyword, leading and trailing spaces are forbidden, as are consecutive spaces. Note also that the non- breaking space (code 160) is not permitted in keywords, since it is visually indistinguishable from an ordinary space. Keywords must be spelled exactly as registered, so that decoders can use simple literal comparisons when looking for particular keywords. In particular, keywords are considered case-sensitive. See Recommendations for Encoders: Text chunk processing (Section 9.7) and Recommendations for Decoders: Text chunk processing (Section 10.11). 4.2.8. tIME Image last-modification time The tIME chunk gives the time of the last image modification (not the time of initial image creation). It contains: Year: 2 bytes (complete; for example, 1995, not 95) Month: 1 byte (1-12) Day: 1 byte (1-31) Hour: 1 byte (0-23) Minute: 1 byte (0-59) Second: 1 byte (0-60) (yes, 60, for leap seconds; not 61, a common error) Universal Time (UTC, also called GMT) should be specified rather than local time.
The tIME chunk is intended for use as an automatically-applied time stamp that is updated whenever the image data is changed. It is recommended that tIME not be changed by PNG editors that do not change the image data. See also the Creation Time tEXt keyword, which can be used for a user-supplied time. 4.2.9. tRNS Transparency The tRNS chunk specifies that the image uses simple transparency: either alpha values associated with palette entries (for indexed-color images) or a single transparent color (for grayscale and truecolor images). Although simple transparency is not as elegant as the full alpha channel, it requires less storage space and is sufficient for many common cases. For color type 3 (indexed color), the tRNS chunk contains a series of one-byte alpha values, corresponding to entries in the PLTE chunk: Alpha for palette index 0: 1 byte Alpha for palette index 1: 1 byte ... etc ... Each entry indicates that pixels of the corresponding palette index must be treated as having the specified alpha value. Alpha values have the same interpretation as in an 8-bit full alpha channel: 0 is fully transparent, 255 is fully opaque, regardless of image bit depth. The tRNS chunk must not contain more alpha values than there are palette entries, but tRNS can contain fewer values than there are palette entries. In this case, the alpha value for all remaining palette entries is assumed to be 255. In the common case in which only palette index 0 need be made transparent, only a one-byte tRNS chunk is needed. For color type 0 (grayscale), the tRNS chunk contains a single gray level value, stored in the format: Gray: 2 bytes, range 0 .. (2^bitdepth)-1 (For consistency, 2 bytes are used regardless of the image bit depth.) Pixels of the specified gray level are to be treated as transparent (equivalent to alpha value 0); all other pixels are to be treated as fully opaque (alpha value (2^bitdepth)-1).
For color type 2 (truecolor), the tRNS chunk contains a single RGB color value, stored in the format: Red: 2 bytes, range 0 .. (2^bitdepth)-1 Green: 2 bytes, range 0 .. (2^bitdepth)-1 Blue: 2 bytes, range 0 .. (2^bitdepth)-1 (For consistency, 2 bytes per sample are used regardless of the image bit depth.) Pixels of the specified color value are to be treated as transparent (equivalent to alpha value 0); all other pixels are to be treated as fully opaque (alpha value (2^bitdepth)-1). tRNS is prohibited for color types 4 and 6, since a full alpha channel is already present in those cases. Note: when dealing with 16-bit grayscale or truecolor data, it is important to compare both bytes of the sample values to determine whether a pixel is transparent. Although decoders may drop the low-order byte of the samples for display, this must not occur until after the data has been tested for transparency. For example, if the grayscale level 0x0001 is specified to be transparent, it would be incorrect to compare only the high-order byte and decide that 0x0002 is also transparent. When present, the tRNS chunk must precede the first IDAT chunk, and must follow the PLTE chunk, if any. 4.2.10. zTXt Compressed textual data The zTXt chunk contains textual data, just as tEXt does; however, zTXt takes advantage of compression. zTXt and tEXt chunks are semantically equivalent, but zTXt is recommended for storing large blocks of text. A zTXt chunk contains: Keyword: 1-79 bytes (character string) Null separator: 1 byte Compression method: 1 byte Compressed text: n bytes The keyword and null separator are exactly the same as in the tEXt chunk. Note that the keyword is not compressed. The compression method byte identifies the compression method used in this zTXt chunk. The only value presently defined for it is 0 (deflate/inflate compression). The compression method byte is
followed by a compressed datastream that makes up the remainder of the chunk. For compression method 0, this datastream adheres to the zlib datastream format (see Deflate/Inflate Compression, Chapter 5). Decompression of this datastream yields Latin-1 text that is identical to the text that would be stored in an equivalent tEXt chunk. Any number of zTXt and tEXt chunks can appear in the same file. See the preceding definition of the tEXt chunk for the predefined keywords and the recommended format of the text. See Recommendations for Encoders: Text chunk processing (Section 9.7), and Recommendations for Decoders: Text chunk processing (Section 10.11). 4.3. Summary of standard chunks This table summarizes some properties of the standard chunk types. Critical chunks (must appear in this order, except PLTE is optional): Name Multiple Ordering constraints OK? IHDR No Must be first PLTE No Before IDAT IDAT Yes Multiple IDATs must be consecutive IEND No Must be last Ancillary chunks (need not appear in this order): Name Multiple Ordering constraints OK? cHRM No Before PLTE and IDAT gAMA No Before PLTE and IDAT sBIT No Before PLTE and IDAT bKGD No After PLTE; before IDAT hIST No After PLTE; before IDAT tRNS No After PLTE; before IDAT pHYs No Before IDAT tIME No None tEXt Yes None zTXt Yes None
Standard keywords for tEXt and zTXt chunks: Title Short (one line) title or caption for image Author Name of image's creator Description Description of image (possibly long) Copyright Copyright notice Creation Time Time of original image creation Software Software used to create the image Disclaimer Legal disclaimer Warning Warning of nature of content Source Device used to create the image Comment Miscellaneous comment; conversion from GIF comment 4.4. Additional chunk types Additional public PNG chunk types are defined in the document "PNG Special-Purpose Public Chunks" [PNG-EXTENSIONS]. Chunks described there are expected to be less widely supported than those defined in this specification. However, application authors are encouraged to use those chunk types whenever appropriate for their applications. Additional chunk types can be proposed for inclusion in that list by contacting the PNG specification maintainers at png-info@uunet.uu.net or at png-group@w3.org. New public chunks will only be registered if they are of use to others and do not violate the design philosophy of PNG. Chunk registration is not automatic, although it is the intent of the authors that it be straightforward when a new chunk of potentially wide application is needed. Note that the creation of new critical chunk types is discouraged unless absolutely necessary. Applications can also use private chunk types to carry data that is not of interest to other applications. See Recommendations for Encoders: Use of private chunks (Section 9.8). Decoders must be prepared to encounter unrecognized public or private chunk type codes. Unrecognized chunk types must be handled as described in Chunk naming conventions (Section 3.3). 5. Deflate/Inflate Compression PNG compression method 0 (the only compression method presently defined for PNG) specifies deflate/inflate compression with a 32K sliding window. Deflate compression is an LZ77 derivative used in zip, gzip, pkzip and related programs. Extensive research has been done supporting its patent-free status. Portable C implementations are freely available.
Deflate-compressed datastreams within PNG are stored in the "zlib" format, which has the structure: Compression method/flags code: 1 byte Additional flags/check bits: 1 byte Compressed data blocks: n bytes Check value: 4 bytes Further details on this format are given in the zlib specification [RFC-1950]. For PNG compression method 0, the zlib compression method/flags code must specify method code 8 ("deflate" compression) and an LZ77 window size of not more than 32K. Note that the zlib compression method number is not the same as the PNG compression method number. The additional flags must not specify a preset dictionary. The compressed data within the zlib datastream is stored as a series of blocks, each of which can represent raw (uncompressed) data, LZ77-compressed data encoded with fixed Huffman codes, or LZ77- compressed data encoded with custom Huffman codes. A marker bit in the final block identifies it as the last block, allowing the decoder to recognize the end of the compressed datastream. Further details on the compression algorithm and the encoding are given in the deflate specification [RFC-1951]. The check value stored at the end of the zlib datastream is calculated on the uncompressed data represented by the datastream. Note that the algorithm used is not the same as the CRC calculation used for PNG chunk check values. The zlib check value is useful mainly as a cross-check that the deflate and inflate algorithms are implemented correctly. Verifying the chunk CRCs provides adequate confidence that the PNG file has been transmitted undamaged. In a PNG file, the concatenation of the contents of all the IDAT chunks makes up a zlib datastream as specified above. This datastream decompresses to filtered image data as described elsewhere in this document. It is important to emphasize that the boundaries between IDAT chunks are arbitrary and can fall anywhere in the zlib datastream. There is not necessarily any correlation between IDAT chunk boundaries and deflate block boundaries or any other feature of the zlib data. For example, it is entirely possible for the terminating zlib check value to be split across IDAT chunks.
In the same vein, there is no required correlation between the structure of the image data (i.e., scanline boundaries) and deflate block boundaries or IDAT chunk boundaries. The complete image data is represented by a single zlib datastream that is stored in some number of IDAT chunks; a decoder that assumes any more than this is incorrect. (Of course, some encoder implementations may emit files in which some of these structures are indeed related. But decoders cannot rely on this.) PNG also uses zlib datastreams in zTXt chunks. In a zTXt chunk, the remainder of the chunk following the compression method byte is a zlib datastream as specified above. This datastream decompresses to the user-readable text described by the chunk's keyword. Unlike the image data, such datastreams are not split across chunks; each zTXt chunk contains an independent zlib datastream. Additional documentation and portable C code for deflate and inflate are available from the Info-ZIP archives at <URL:ftp://ftp.uu.net/pub/archiving/zip/>. 6. Filter Algorithms This chapter describes the filter algorithms that can be applied before compression. The purpose of these filters is to prepare the image data for optimum compression. 6.1. Filter types PNG filter method 0 defines five basic filter types: Type Name 0 None 1 Sub 2 Up 3 Average 4 Paeth (Note that filter method 0 in IHDR specifies exactly this set of five filter types. If the set of filter types is ever extended, a different filter method number will be assigned to the extended set, so that decoders need not decompress the data to discover that it contains unsupported filter types.) The encoder can choose which of these filter algorithms to apply on a scanline-by-scanline basis. In the image data sent to the compression step, each scanline is preceded by a filter type byte that specifies the filter algorithm used for that scanline.
Filtering algorithms are applied to bytes, not to pixels, regardless of the bit depth or color type of the image. The filtering algorithms work on the byte sequence formed by a scanline that has been represented as described in Image layout (Section 2.3). If the image includes an alpha channel, the alpha data is filtered in the same way as the image data. When the image is interlaced, each pass of the interlace pattern is treated as an independent image for filtering purposes. The filters work on the byte sequences formed by the pixels actually transmitted during a pass, and the "previous scanline" is the one previously transmitted in the same pass, not the one adjacent in the complete image. Note that the subimage transmitted in any one pass is always rectangular, but is of smaller width and/or height than the complete image. Filtering is not applied when this subimage is empty. For all filters, the bytes "to the left of" the first pixel in a scanline must be treated as being zero. For filters that refer to the prior scanline, the entire prior scanline must be treated as being zeroes for the first scanline of an image (or of a pass of an interlaced image). To reverse the effect of a filter, the decoder must use the decoded values of the prior pixel on the same line, the pixel immediately above the current pixel on the prior line, and the pixel just to the left of the pixel above. This implies that at least one scanline's worth of image data will have to be stored by the decoder at all times. Even though some filter types do not refer to the prior scanline, the decoder will always need to store each scanline as it is decoded, since the next scanline might use a filter that refers to it. PNG imposes no restriction on which filter types can be applied to an image. However, the filters are not equally effective on all types of data. See Recommendations for Encoders: Filter selection (Section 9.6). See also Rationale: Filtering (Section 12.9). 6.2. Filter type 0: None With the None filter, the scanline is transmitted unmodified; it is only necessary to insert a filter type byte before the data.
6.3. Filter type 1: Sub The Sub filter transmits the difference between each byte and the value of the corresponding byte of the prior pixel. To compute the Sub filter, apply the following formula to each byte of the scanline: Sub(x) = Raw(x) - Raw(x-bpp) where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refers to the raw data byte at that byte position in the scanline, and bpp is defined as the number of bytes per complete pixel, rounding up to one. For example, for color type 2 with a bit depth of 16, bpp is equal to 6 (three samples, two bytes per sample); for color type 0 with a bit depth of 2, bpp is equal to 1 (rounding up); for color type 4 with a bit depth of 16, bpp is equal to 4 (two-byte grayscale sample, plus two-byte alpha sample). Note this computation is done for each byte, regardless of bit depth. In a 16-bit image, each MSB is predicted from the preceding MSB and each LSB from the preceding LSB, because of the way that bpp is defined. Unsigned arithmetic modulo 256 is used, so that both the inputs and outputs fit into bytes. The sequence of Sub values is transmitted as the filtered scanline. For all x < 0, assume Raw(x) = 0. To reverse the effect of the Sub filter after decompression, output the following value: Sub(x) + Raw(x-bpp) (computed mod 256), where Raw refers to the bytes already decoded. 6.4. Filter type 2: Up The Up filter is just like the Sub filter except that the pixel immediately above the current pixel, rather than just to its left, is used as the predictor. To compute the Up filter, apply the following formula to each byte of the scanline: Up(x) = Raw(x) - Prior(x)
where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refers to the raw data byte at that byte position in the scanline, and Prior(x) refers to the unfiltered bytes of the prior scanline. Note this is done for each byte, regardless of bit depth. Unsigned arithmetic modulo 256 is used, so that both the inputs and outputs fit into bytes. The sequence of Up values is transmitted as the filtered scanline. On the first scanline of an image (or of a pass of an interlaced image), assume Prior(x) = 0 for all x. To reverse the effect of the Up filter after decompression, output the following value: Up(x) + Prior(x) (computed mod 256), where Prior refers to the decoded bytes of the prior scanline. 6.5. Filter type 3: Average The Average filter uses the average of the two neighboring pixels (left and above) to predict the value of a pixel. To compute the Average filter, apply the following formula to each byte of the scanline: Average(x) = Raw(x) - floor((Raw(x-bpp)+Prior(x))/2) where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refers to the raw data byte at that byte position in the scanline, Prior(x) refers to the unfiltered bytes of the prior scanline, and bpp is defined as for the Sub filter. Note this is done for each byte, regardless of bit depth. The sequence of Average values is transmitted as the filtered scanline. The subtraction of the predicted value from the raw byte must be done modulo 256, so that both the inputs and outputs fit into bytes. However, the sum Raw(x-bpp)+Prior(x) must be formed without overflow (using at least nine-bit arithmetic). floor() indicates that the result of the division is rounded to the next lower integer if fractional; in other words, it is an integer division or right shift operation.
For all x < 0, assume Raw(x) = 0. On the first scanline of an image (or of a pass of an interlaced image), assume Prior(x) = 0 for all x. To reverse the effect of the Average filter after decompression, output the following value: Average(x) + floor((Raw(x-bpp)+Prior(x))/2) where the result is computed mod 256, but the prediction is calculated in the same way as for encoding. Raw refers to the bytes already decoded, and Prior refers to the decoded bytes of the prior scanline. 6.6. Filter type 4: Paeth The Paeth filter computes a simple linear function of the three neighboring pixels (left, above, upper left), then chooses as predictor the neighboring pixel closest to the computed value. This technique is due to Alan W. Paeth [PAETH]. To compute the Paeth filter, apply the following formula to each byte of the scanline: Paeth(x) = Raw(x) - PaethPredictor(Raw(x-bpp), Prior(x), Prior(x-bpp)) where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refers to the raw data byte at that byte position in the scanline, Prior(x) refers to the unfiltered bytes of the prior scanline, and bpp is defined as for the Sub filter. Note this is done for each byte, regardless of bit depth. Unsigned arithmetic modulo 256 is used, so that both the inputs and outputs fit into bytes. The sequence of Paeth values is transmitted as the filtered scanline.
The PaethPredictor function is defined by the following pseudocode: function PaethPredictor (a, b, c) begin ; a = left, b = above, c = upper left p := a + b - c ; initial estimate pa := abs(p - a) ; distances to a, b, c pb := abs(p - b) pc := abs(p - c) ; return nearest of a,b,c, ; breaking ties in order a,b,c. if pa <= pb AND pa <= pc then return a else if pb <= pc then return b else return c end The calculations within the PaethPredictor function must be performed exactly, without overflow. Arithmetic modulo 256 is to be used only for the final step of subtracting the function result from the target byte value. Note that the order in which ties are broken is critical and must not be altered. The tie break order is: pixel to the left, pixel above, pixel to the upper left. (This order differs from that given in Paeth's article.) For all x < 0, assume Raw(x) = 0 and Prior(x) = 0. On the first scanline of an image (or of a pass of an interlaced image), assume Prior(x) = 0 for all x. To reverse the effect of the Paeth filter after decompression, output the following value: Paeth(x) + PaethPredictor(Raw(x-bpp), Prior(x), Prior(x-bpp)) (computed mod 256), where Raw and Prior refer to bytes already decoded. Exactly the same PaethPredictor function is used by both encoder and decoder. 7. Chunk Ordering Rules To allow new chunk types to be added to PNG, it is necessary to establish rules about the ordering requirements for all chunk types. Otherwise a PNG editing program cannot know what to do when it encounters an unknown chunk.
We define a "PNG editor" as a program that modifies a PNG file and wishes to preserve as much as possible of the ancillary information in the file. Two examples of PNG editors are a program that adds or modifies text chunks, and a program that adds a suggested palette to a truecolor PNG file. Ordinary image editors are not PNG editors in this sense, because they usually discard all unrecognized information while reading in an image. (Note: we strongly encourage programs handling PNG files to preserve ancillary information whenever possible.) As an example of possible problems, consider a hypothetical new ancillary chunk type that is safe-to-copy and is required to appear after PLTE if PLTE is present. If our program to add a suggested PLTE does not recognize this new chunk, it may insert PLTE in the wrong place, namely after the new chunk. We could prevent such problems by requiring PNG editors to discard all unknown chunks, but that is a very unattractive solution. Instead, PNG requires ancillary chunks not to have ordering restrictions like this. To prevent this type of problem while allowing for future extension, we put some constraints on both the behavior of PNG editors and the allowed ordering requirements for chunks. 7.1. Behavior of PNG editors The rules for PNG editors are: * When copying an unknown unsafe-to-copy ancillary chunk, a PNG editor must not move the chunk relative to any critical chunk. It can relocate the chunk freely relative to other ancillary chunks that occur between the same pair of critical chunks. (This is well defined since the editor must not add, delete, modify, or reorder critical chunks if it is preserving unknown unsafe-to-copy chunks.) * When copying an unknown safe-to-copy ancillary chunk, a PNG editor must not move the chunk from before IDAT to after IDAT or vice versa. (This is well defined because IDAT is always present.) Any other reordering is permitted. * When copying a known ancillary chunk type, an editor need only honor the specific chunk ordering rules that exist for that chunk type. However, it can always choose to apply the above general rules instead. * PNG editors must give up on encountering an unknown critical chunk type, because there is no way to be certain that a valid file will result from modifying a file containing such a chunk. (Note that simply discarding the chunk is not good enough, because it might have unknown implications for the interpretation of other chunks.)
These rules are expressed in terms of copying chunks from an input file to an output file, but they apply in the obvious way if a PNG file is modified in place. See also Chunk naming conventions (Section 3.3). 7.2. Ordering of ancillary chunks The ordering rules for an ancillary chunk type cannot be any stricter than this: * Unsafe-to-copy chunks can have ordering requirements relative to critical chunks. * Safe-to-copy chunks can have ordering requirements relative to IDAT. The actual ordering rules for any particular ancillary chunk type may be weaker. See for example the ordering rules for the standard ancillary chunk types (Summary of standard chunks, Section 4.3). Decoders must not assume more about the positioning of any ancillary chunk than is specified by the chunk ordering rules. In particular, it is never valid to assume that a specific ancillary chunk type occurs with any particular positioning relative to other ancillary chunks. (For example, it is unsafe to assume that your private ancillary chunk occurs immediately before IEND. Even if your application always writes it there, a PNG editor might have inserted some other ancillary chunk after it. But you can safely assume that your chunk will remain somewhere between IDAT and IEND.) 7.3. Ordering of critical chunks Critical chunks can have arbitrary ordering requirements, because PNG editors are required to give up if they encounter unknown critical chunks. For example, IHDR has the special ordering rule that it must always appear first. A PNG editor, or indeed any PNG-writing program, must know and follow the ordering rules for any critical chunk type that it can emit.
8. Miscellaneous Topics 8.1. File name extension On systems where file names customarily include an extension signifying file type, the extension ".png" is recommended for PNG files. Lower case ".png" is preferred if file names are case- sensitive. 8.2. Internet media type The Internet Assigned Numbers Authority (IANA) has registered "image/png" as the Internet Media Type for PNG [RFC-2045, RFC- 2048]. For robustness, decoders may choose to also support the interim media type "image/x-png" which was in use before registration was complete. 8.3. Macintosh file layout In the Apple Macintosh system, the following conventions are recommended: * The four-byte file type code for PNG files is "PNGf". (This code has been registered with Apple for PNG files.) The creator code will vary depending on the creating application. * The contents of the data fork must be a PNG file exactly as described in the rest of this specification. * The contents of the resource fork are unspecified. It may be empty or may contain application-dependent resources. * When transferring a Macintosh PNG file to a non-Macintosh system, only the data fork should be transferred. 8.4. Multiple-image extension PNG itself is strictly a single-image format. However, it may be necessary to store multiple images within one file; for example, this is needed to convert some GIF files. In the future, a multiple-image format based on PNG may be defined. Such a format will be considered a separate file format and will have a different signature. PNG-supporting applications may or may not choose to support the multiple-image format. See Rationale: Why not these features? (Section 12.3).
8.5. Security considerations A PNG file or datastream is composed of a collection of explicitly typed "chunks". Chunks whose contents are defined by the specification could actually contain anything, including malicious code. But there is no known risk that such malicious code could be executed on the recipient's computer as a result of decoding the PNG image. The possible security risks associated with future chunk types cannot be specified at this time. Security issues will be considered when evaluating chunks proposed for registration as public chunks. There is no additional security risk associated with unknown or unimplemented chunk types, because such chunks will be ignored, or at most be copied into another PNG file. The tEXt and zTXt chunks contain data that is meant to be displayed as plain text. It is possible that if the decoder displays such text without filtering out control characters, especially the ESC (escape) character, certain systems or terminals could behave in undesirable and insecure ways. We recommend that decoders filter out control characters to avoid this risk; see Recommendations for Decoders: Text chunk processing (Section 10.11). Because every chunk's length is available at its beginning, and because every chunk has a CRC trailer, there is a very robust defense against corrupted data and against fraudulent chunks that attempt to overflow the decoder's buffers. Also, the PNG signature bytes provide early detection of common file transmission errors. A decoder that fails to check CRCs could be subject to data corruption. The only likely consequence of such corruption is incorrectly displayed pixels within the image. Worse things might happen if the CRC of the IHDR chunk is not checked and the width or height fields are corrupted. See Recommendations for Decoders: Error checking (Section 10.1). A poorly written decoder might be subject to buffer overflow, because chunks can be extremely large, up to (2^31)-1 bytes long. But properly written decoders will handle large chunks without difficulty.