Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 1813

NFS Version 3 Protocol Specification

Pages: 126
Informational
Part 2 of 4 – Pages 27 to 66
First   Prev   Next

Top   ToC   RFC1813 - Page 27   prevText
3. Server Procedures

   The following sections define the RPC procedures that are
   supplied by an NFS version 3 protocol server. The RPC
   procedure number is given at the top of the page with the
   name. The SYNOPSIS provides the name of the procedure, the
   list of the names of the arguments, the list of the names of
   the results, followed by the XDR argument declarations and
   results declarations. The information in the SYNOPSIS is
   specified in RPC Data Description Language as defined in
   [RFC1014]. The DESCRIPTION section tells what the procedure
Top   ToC   RFC1813 - Page 28
   is expected to do and how its arguments and results are used.
   The ERRORS section lists the errors returned for specific
   types of failures. These lists are not intended to be the
   definitive statement of all of the errors which can be
   returned by any specific procedure, but as a guide for the
   more common errors which may be returned.  Client
   implementations should be prepared to deal with unexpected
   errors coming from a server. The IMPLEMENTATION field gives
   information about how the procedure is expected to work and
   how it should be used by clients.

      program NFS_PROGRAM {
         version NFS_V3 {

            void
             NFSPROC3_NULL(void)                    = 0;

            GETATTR3res
             NFSPROC3_GETATTR(GETATTR3args)         = 1;

            SETATTR3res
             NFSPROC3_SETATTR(SETATTR3args)         = 2;

            LOOKUP3res
             NFSPROC3_LOOKUP(LOOKUP3args)           = 3;

            ACCESS3res
             NFSPROC3_ACCESS(ACCESS3args)           = 4;

            READLINK3res
             NFSPROC3_READLINK(READLINK3args)       = 5;

            READ3res
             NFSPROC3_READ(READ3args)               = 6;

            WRITE3res
             NFSPROC3_WRITE(WRITE3args)             = 7;

            CREATE3res
             NFSPROC3_CREATE(CREATE3args)           = 8;

            MKDIR3res
             NFSPROC3_MKDIR(MKDIR3args)             = 9;

            SYMLINK3res
             NFSPROC3_SYMLINK(SYMLINK3args)         = 10;
Top   ToC   RFC1813 - Page 29
            MKNOD3res
             NFSPROC3_MKNOD(MKNOD3args)             = 11;

            REMOVE3res
             NFSPROC3_REMOVE(REMOVE3args)           = 12;

            RMDIR3res
             NFSPROC3_RMDIR(RMDIR3args)             = 13;

            RENAME3res
             NFSPROC3_RENAME(RENAME3args)           = 14;

            LINK3res
             NFSPROC3_LINK(LINK3args)               = 15;

            READDIR3res
             NFSPROC3_READDIR(READDIR3args)         = 16;

            READDIRPLUS3res
             NFSPROC3_READDIRPLUS(READDIRPLUS3args) = 17;

            FSSTAT3res
             NFSPROC3_FSSTAT(FSSTAT3args)           = 18;

            FSINFO3res
             NFSPROC3_FSINFO(FSINFO3args)           = 19;

            PATHCONF3res
             NFSPROC3_PATHCONF(PATHCONF3args)       = 20;

            COMMIT3res
             NFSPROC3_COMMIT(COMMIT3args)           = 21;

         } = 3;
      } = 100003;

   Out of range (undefined) procedure numbers result in RPC
   errors.  Refer to [RFC1057] for more detail.

3.1 General comments on attributes and consistency data on failure

   For those procedures that return either post_op_attr or wcc_data
   structures on failure, the discriminated union may contain the
   pre-operation attributes of the object or object parent
   directory.  This depends on the error encountered and may also
   depend on the particular server implementation. Implementors are
   strongly encouraged to return as much attribute data as possible
   upon failure, but client implementors need to be aware that
Top   ToC   RFC1813 - Page 30
   their implementation must correctly handle the variant return
   instance where no attributes or consistency data is returned.

3.2 General comments on filenames

   The following comments apply to all NFS version 3 protocol
   procedures in which the client provides one or more filenames in
   the arguments: LOOKUP, CREATE, MKDIR, SYMLINK, MKNOD, REMOVE,
   RMDIR, RENAME, and LINK.

   1. The filename must not be null nor may it be the null
      string.  The server should return the error, NFS3ERR_ACCES, if
      it receives such a filename. On some clients, the filename, ``''
      or a null string, is assumed to be an alias for the current
      directory. Clients which require this functionality should
      implement it for themselves and not depend upon the server to
      support such semantics.

   2. A filename having the value of "." is assumed to be an
      alias for the current directory. Clients which require this
      functionality should implement it for themselves and not depend
      upon the server to support such semantics. However, the server
      should be able to handle such a filename correctly.

   3. A filename having the value of ".." is assumed to be an
      alias for the parent of the current directory, i.e. the
      directory which contains the current directory. The server
      should be prepared to handle this semantic, if it supports
      directories, even if those directories do not contain UNIX-style
      "." or ".." entries.

   4. If the filename is longer than the maximum for the file
      system (see PATHCONF on page 90, specifically name_max), the
      result depends on the value of the PATHCONF flag, no_trunc. If
      no_trunc is FALSE, the filename will be silently truncated to
      name_max bytes. If no_trunc is TRUE and the filename exceeds the
      server's file system maximum filename length, the operation will
      fail with the error, NFS3ERR_NAMETOOLONG.

   5. In general, there will be characters that a server will
      not be able to handle as part of a filename. This set of
      characters will vary from server to server and from
      implementation to implementation.  In most cases, it is the
      server which will control the client's view of the file system.
      If the server receives a filename containing characters that it
      can not handle, the error, NFS3ERR_EACCES, should be returned.
      Client implementations should be prepared to handle this side
      affect of heterogeneity.
Top   ToC   RFC1813 - Page 31
   See also comments in File name component handling on page 101.

3.3.0 Procedure 0: NULL - Do nothing

   SYNOPSIS

      void NFSPROC3_NULL(void) = 0;

   DESCRIPTION

      Procedure NULL does not do any work. It is made available to
      allow server response testing and timing.

   IMPLEMENTATION

      It is important that this procedure do no work at all so
      that it can be used to measure the overhead of processing
      a service request. By convention, the NULL procedure
      should never require any authentication. A server may
      choose to ignore this convention, in a more secure
      implementation, where responding to the NULL procedure
      call acknowledges the existence of a resource to an
      unauthenticated client.

   ERRORS

      Since the NULL procedure takes no NFS version 3 protocol
      arguments and returns no NFS version 3 protocol response,
      it can not return an NFS version 3 protocol error.
      However, it is possible that some server implementations
      may return RPC errors based on security and authentication
      requirements.
Top   ToC   RFC1813 - Page 32
3.3.1 Procedure 1: GETATTR - Get file attributes

   SYNOPSIS

      GETATTR3res NFSPROC3_GETATTR(GETATTR3args) = 1;

      struct GETATTR3args {
         nfs_fh3  object;
      };

      struct GETATTR3resok {
         fattr3   obj_attributes;
      };

      union GETATTR3res switch (nfsstat3 status) {
      case NFS3_OK:
         GETATTR3resok  resok;
      default:
         void;
      };

   DESCRIPTION

      Procedure GETATTR retrieves the attributes for a specified
      file system object. The object is identified by the file
      handle that the server returned as part of the response
      from a LOOKUP, CREATE, MKDIR, SYMLINK, MKNOD, or
      READDIRPLUS procedure (or from the MOUNT service,
      described elsewhere). On entry, the arguments in
      GETATTR3args are:

      object
         The file handle of an object whose attributes are to be
         retrieved.

      On successful return, GETATTR3res.status is NFS3_OK and
      GETATTR3res.resok contains:

      obj_attributes
         The attributes for the object.

      Otherwise, GETATTR3res.status contains the error on failure and
      no other results are returned.

   IMPLEMENTATION

      The attributes of file system objects is a point of major
      disagreement between different operating systems. Servers
Top   ToC   RFC1813 - Page 33
      should make a best attempt to support all of the
      attributes in the fattr3 structure so that clients can
      count on this as a common ground. Some mapping may be
      required to map local attributes to those in the fattr3
      structure.

      Today, most client NFS version 3 protocol implementations
      implement a time-bounded attribute caching scheme to
      reduce over-the-wire attribute checks.

   ERRORS

      NFS3ERR_IO
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
      NFS3ERR_SERVERFAULT

   SEE ALSO

      ACCESS.

3.3.2 Procedure 2: SETATTR - Set file attributes

   SYNOPSIS

      SETATTR3res NFSPROC3_SETATTR(SETATTR3args) = 2;

      union sattrguard3 switch (bool check) {
      case TRUE:
         nfstime3  obj_ctime;
      case FALSE:
         void;
      };

      struct SETATTR3args {
         nfs_fh3      object;
         sattr3       new_attributes;
         sattrguard3  guard;
      };

      struct SETATTR3resok {
         wcc_data  obj_wcc;
      };

      struct SETATTR3resfail {
         wcc_data  obj_wcc;
      };
Top   ToC   RFC1813 - Page 34
      union SETATTR3res switch (nfsstat3 status) {
      case NFS3_OK:
         SETATTR3resok   resok;
      default:
         SETATTR3resfail resfail;
      };

   DESCRIPTION

      Procedure SETATTR changes one or more of the attributes of
      a file system object on the server. The new attributes are
      specified by a sattr3 structure. On entry, the arguments
      in SETATTR3args are:

      object
         The file handle for the object.

      new_attributes
         A sattr3 structure containing booleans and
         enumerations describing the attributes to be set and the new
         values for those attributes.

      guard
         A sattrguard3 union:

         check
            TRUE if the server is to verify that guard.obj_ctime
            matches the ctime for the object; FALSE otherwise.

      A client may request that the server check that the object
      is in an expected state before performing the SETATTR
      operation. To do this, it sets the argument guard.check to
      TRUE and the client passes a time value in guard.obj_ctime.
      If guard.check is TRUE, the server must compare the value of
      guard.obj_ctime to the current ctime of the object. If the
      values are different, the server must preserve the object
      attributes and must return a status of NFS3ERR_NOT_SYNC.
      If guard.check is FALSE, the server will not perform this
      check.

      On successful return, SETATTR3res.status is NFS3_OK and
      SETATTR3res.resok contains:

         obj_wcc
            A wcc_data structure containing the old and new
            attributes for the object.
Top   ToC   RFC1813 - Page 35
      Otherwise, SETATTR3res.status contains the error on
      failure and SETATTR3res.resfail contains the following:

         obj_wcc
            A wcc_data structure containing the old and new
            attributes for the object.

   IMPLEMENTATION

      The guard.check mechanism allows the client to avoid
      changing the attributes of an object on the basis of stale
      attributes. It does not guarantee exactly-once semantics.
      In particular, if a reply is lost and the server does not
      detect the retransmission of the request, the procedure
      can fail with the error, NFS3ERR_NOT_SYNC, even though the
      attribute setting was previously performed successfully.
      The client can attempt to recover from this error by
      getting fresh attributes from the server and sending a new
      SETATTR request using the new ctime.  The client can
      optionally check the attributes to avoid the second
      SETATTR request if the new attributes show that the
      attributes have already been set as desired (though it may
      not have been the issuing client that set the
      attributes).

      The new_attributes.size field is used to request changes
      to the size of a file. A value of 0 causes the file to be
      truncated, a value less than the current size of the file
      causes data from new size to the end of the file to be
      discarded, and a size greater than the current size of the
      file causes logically zeroed data bytes to be added to the
      end of the file.  Servers are free to implement this using
      holes or actual zero data bytes. Clients should not make
      any assumptions regarding a server's implementation of
      this feature, beyond that the bytes returned will be
      zeroed. Servers must support extending the file size via
      SETATTR.

      SETATTR is not guaranteed atomic. A failed SETATTR may
      partially change a file's attributes.

      Changing the size of a file with SETATTR indirectly
      changes the mtime. A client must account for this as size
      changes can result in data deletion.

      If server and client times differ, programs that compare
      client time to file times can break. A time maintenance
      protocol should be used to limit client/server time skew.
Top   ToC   RFC1813 - Page 36
      In a heterogeneous environment, it is quite possible that
      the server will not be able to support the full range of
      SETATTR requests. The error, NFS3ERR_INVAL, may be
      returned if the server can not store a uid or gid in its
      own representation of uids or gids, respectively.  If the
      server can only support 32 bit offsets and sizes, a
      SETATTR request to set the size of a file to larger than
      can be represented in 32 bits will be rejected with this
      same error.

   ERRORS

      NFS3ERR_PERM
      NFS3ERR_IO
      NFS3ERR_ACCES
      NFS3ERR_INVAL
      NFS3ERR_NOSPC
      NFS3ERR_ROFS
      NFS3ERR_DQUOT
      NFS3ERR_NOT_SYNC
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
      NFS3ERR_SERVERFAULT

   SEE ALSO

      CREATE, MKDIR, SYMLINK, and MKNOD.
Top   ToC   RFC1813 - Page 37
3.3.3 Procedure 3: LOOKUP -  Lookup filename

   SYNOPSIS

      LOOKUP3res NFSPROC3_LOOKUP(LOOKUP3args) = 3;

      struct LOOKUP3args {
           diropargs3  what;
      };

      struct LOOKUP3resok {
           nfs_fh3      object;
           post_op_attr obj_attributes;
           post_op_attr dir_attributes;
      };

      struct LOOKUP3resfail {
           post_op_attr dir_attributes;
      };

      union LOOKUP3res switch (nfsstat3 status) {
      case NFS3_OK:
           LOOKUP3resok    resok;
      default:
           LOOKUP3resfail  resfail;
      };

   DESCRIPTION

      Procedure LOOKUP searches a directory for a specific name
      and returns the file handle for the corresponding file
      system object. On entry, the arguments in LOOKUP3args
      are:

      what
         Object to look up:

         dir
            The file handle for the directory to search.

         name
            The filename to be searched for. Refer to General
            comments on filenames on page 30.

      On successful return, LOOKUP3res.status is NFS3_OK and
      LOOKUP3res.resok contains:
Top   ToC   RFC1813 - Page 38
      object
         The file handle of the object corresponding to
         what.name.

      obj_attributes
         The attributes of the object corresponding to
         what.name.

      dir_attributes
         The post-operation attributes of the directory,
         what.dir.

      Otherwise, LOOKUP3res.status contains the error on failure and
      LOOKUP3res.resfail contains the following:

      dir_attributes
         The post-operation attributes for the directory,
         what.dir.

   IMPLEMENTATION

      At first glance, in the case where what.name refers to a
      mount point on the server, two different replies seem
      possible. The server can return either the file handle for
      the underlying directory that is mounted on or the file
      handle of the root of the mounted directory.  This
      ambiguity is simply resolved. A server will not allow a
      LOOKUP operation to cross a mountpoint to the root of a
      different filesystem, even if the filesystem is exported.
      This does not prevent a client from accessing a hierarchy
      of filesystems exported by a server, but the client must
      mount each of the filesystems individually so that the
      mountpoint crossing takes place on the client.  A given
      server implementation may refine these rules given
      capabilities or limitations particular to that
      implementation. Refer to [X/OpenNFS] for a discussion on
      exporting file systems.

      Two filenames are distinguished, as in the NFS version 2
      protocol.  The name, ".", is an alias for the current
      directory and the name, "..", is an alias for the parent
      directory; that is, the directory that includes the
      specified directory as a member. There is no facility for
      dealing with a multiparented directory and the NFS
      protocol assumes a hierarchical organization, organized as
      a single-rooted tree.
Top   ToC   RFC1813 - Page 39
      Note that this procedure does not follow symbolic links.
      The client is responsible for all parsing of filenames
      including filenames that are modified by symbolic links
      encountered during the lookup process.

   ERRORS

      NFS3ERR_IO
      NFS3ERR_NOENT
      NFS3ERR_ACCES
      NFS3ERR_NOTDIR
      NFS3ERR_NAMETOOLONG
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
      NFS3ERR_SERVERFAULT

   SEE ALSO

      CREATE, MKDIR, SYMLINK, MKNOD, READDIRPLUS, and PATHCONF.
Top   ToC   RFC1813 - Page 40
3.3.4 Procedure 4: ACCESS - Check Access Permission

   SYNOPSIS

      ACCESS3res NFSPROC3_ACCESS(ACCESS3args) = 4;

      const ACCESS3_READ    = 0x0001;
      const ACCESS3_LOOKUP  = 0x0002;
      const ACCESS3_MODIFY  = 0x0004;
      const ACCESS3_EXTEND  = 0x0008;
      const ACCESS3_DELETE  = 0x0010;
      const ACCESS3_EXECUTE = 0x0020;

      struct ACCESS3args {
           nfs_fh3  object;
           uint32   access;
      };

      struct ACCESS3resok {
           post_op_attr   obj_attributes;
           uint32         access;
      };

      struct ACCESS3resfail {
           post_op_attr   obj_attributes;
      };

      union ACCESS3res switch (nfsstat3 status) {
      case NFS3_OK:
           ACCESS3resok   resok;
      default:
           ACCESS3resfail resfail;
      };

   DESCRIPTION

      Procedure ACCESS determines the access rights that a user,
      as identified by the credentials in the request, has with
      respect to a file system object. The client encodes the
      set of permissions that are to be checked in a bit mask.
      The server checks the permissions encoded in the bit mask.
      A status of NFS3_OK is returned along with a bit mask
      encoded with the permissions that the client is allowed.

      The results of this procedure are necessarily advisory in
      nature.  That is, a return status of NFS3_OK and the
      appropriate bit set in the bit mask does not imply that
      such access will be allowed to the file system object in
Top   ToC   RFC1813 - Page 41
      the future, as access rights can be revoked by the server
      at any time.

      On entry, the arguments in ACCESS3args are:

      object
         The file handle for the file system object to which
         access is to be checked.

      access
         A bit mask of access permissions to check.

      The following access permissions may be requested:

         ACCESS3_READ
            Read data from file or read a directory.

         ACCESS3_LOOKUP
            Look up a name in a directory (no meaning for
            non-directory objects).

         ACCESS3_MODIFY
            Rewrite existing file data or modify existing
            directory entries.

         ACCESS3_EXTEND
            Write new data or add directory entries.

         ACCESS3_DELETE
            Delete an existing directory entry.

         ACCESS3_EXECUTE
            Execute file (no meaning for a directory).

      On successful return, ACCESS3res.status is NFS3_OK. The
      server should return a status of NFS3_OK if no errors
      occurred that prevented the server from making the
      required access checks. The results in ACCESS3res.resok
      are:

      obj_attributes
         The post-operation attributes of object.

      access
         A bit mask of access permissions indicating access
         rights for the authentication credentials provided with
         the request.
Top   ToC   RFC1813 - Page 42
      Otherwise, ACCESS3res.status contains the error on failure
      and ACCESS3res.resfail contains the following:

      obj_attributes
         The attributes of object - if access to attributes is
         permitted.

   IMPLEMENTATION

      In general, it is not sufficient for the client to attempt
      to deduce access permissions by inspecting the uid, gid,
      and mode fields in the file attributes, since the server
      may perform uid or gid mapping or enforce additional
      access control restrictions. It is also possible that the
      NFS version 3 protocol server may not be in the same ID
      space as the NFS version 3 protocol client. In these cases
      (and perhaps others), the NFS version 3 protocol client
      can not reliably perform an access check with only current
      file attributes.

      In the NFS version 2 protocol, the only reliable way to
      determine whether an operation was allowed was to try it
      and see if it succeeded or failed. Using the ACCESS
      procedure in the NFS version 3 protocol, the client can
      ask the server to indicate whether or not one or more
      classes of operations are permitted.  The ACCESS operation
      is provided to allow clients to check before doing a
      series of operations. This is useful in operating systems
      (such as UNIX) where permission checking is done only when
      a file or directory is opened. This procedure is also
      invoked by NFS client access procedure (called possibly
      through access(2)). The intent is to make the behavior of
      opening a remote file more consistent with the behavior of
      opening a local file.

      The information returned by the server in response to an
      ACCESS call is not permanent. It was correct at the exact
      time that the server performed the checks, but not
      necessarily afterwards. The server can revoke access
      permission at any time.

      The NFS version 3 protocol client should use the effective
      credentials of the user to build the authentication
      information in the ACCESS request used to determine access
      rights. It is the effective user and group credentials
      that are used in subsequent read and write operations. See
      the comments in Permission issues on page 98 for more
      information on this topic.
Top   ToC   RFC1813 - Page 43
      Many implementations do not directly support the
      ACCESS3_DELETE permission. Operating systems like UNIX
      will ignore the ACCESS3_DELETE bit if set on an access
      request on a non-directory object. In these systems,
      delete permission on a file is determined by the access
      permissions on the directory in which the file resides,
      instead of being determined by the permissions of the file
      itself.  Thus, the bit mask returned for such a request
      will have the ACCESS3_DELETE bit set to 0, indicating that
      the client does not have this permission.

   ERRORS

      NFS3ERR_IO
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
      NFS3ERR_SERVERFAULT

   SEE ALSO

      GETATTR.
Top   ToC   RFC1813 - Page 44
3.3.5 Procedure 5: READLINK - Read from symbolic link

   SYNOPSIS

      READLINK3res NFSPROC3_READLINK(READLINK3args) = 5;

      struct READLINK3args {
           nfs_fh3  symlink;
      };

      struct READLINK3resok {
           post_op_attr   symlink_attributes;
           nfspath3       data;
      };

      struct READLINK3resfail {
           post_op_attr   symlink_attributes;
      };

      union READLINK3res switch (nfsstat3 status) {
      case NFS3_OK:
           READLINK3resok   resok;
      default:
           READLINK3resfail resfail;
      };

   DESCRIPTION

      Procedure READLINK reads the data associated with a
      symbolic link.  The data is an ASCII string that is opaque
      to the server.  That is, whether created by the NFS
      version 3 protocol software from a client or created
      locally on the server, the data in a symbolic link is not
      interpreted when created, but is simply stored. On entry,
      the arguments in READLINK3args are:

      symlink
         The file handle for a symbolic link (file system object
         of type NF3LNK).

      On successful return, READLINK3res.status is NFS3_OK and
      READLINK3res.resok contains:

      data
         The data associated with the symbolic link.

      symlink_attributes
         The post-operation attributes for the symbolic link.
Top   ToC   RFC1813 - Page 45
      Otherwise, READLINK3res.status contains the error on
      failure and READLINK3res.resfail contains the following:

      symlink_attributes
         The post-operation attributes for the symbolic link.

   IMPLEMENTATION

      A symbolic link is nominally a pointer to another file.
      The data is not necessarily interpreted by the server,
      just stored in the file.  It is possible for a client
      implementation to store a path name that is not meaningful
      to the server operating system in a symbolic link.  A
      READLINK operation returns the data to the client for
      interpretation. If different implementations want to share
      access to symbolic links, then they must agree on the
      interpretation of the data in the symbolic link.

      The READLINK operation is only allowed on objects of type,
      NF3LNK.  The server should return the error,
      NFS3ERR_INVAL, if the object is not of type, NF3LNK.
      (Note: The X/Open XNFS Specification for the NFS version 2
      protocol defined the error status in this case as
      NFSERR_NXIO. This is inconsistent with existing server
      practice.)

   ERRORS

      NFS3ERR_IO
      NFS3ERR_INVAL
      NFS3ERR_ACCES
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
      NFS3ERR_NOTSUPP
      NFS3ERR_SERVERFAULT

   SEE ALSO

      READLINK, SYMLINK.
Top   ToC   RFC1813 - Page 46
3.3.6 Procedure 6: READ - Read From file

   SYNOPSIS

      READ3res NFSPROC3_READ(READ3args) = 6;

      struct READ3args {
           nfs_fh3  file;
           offset3  offset;
           count3   count;
      };

      struct READ3resok {
           post_op_attr   file_attributes;
           count3         count;
           bool           eof;
           opaque         data<>;
      };

      struct READ3resfail {
           post_op_attr   file_attributes;
      };

      union READ3res switch (nfsstat3 status) {
      case NFS3_OK:
           READ3resok   resok;
      default:
           READ3resfail resfail;
      };

   DESCRIPTION

      Procedure READ reads data from a file.  On entry, the
      arguments in READ3args are:

      file
         The file handle of the file from which data is to be
         read.  This must identify a file system object of type,
         NF3REG.

      offset
         The position within the file at which the read is to
         begin.  An offset of 0 means to read data starting at
         the beginning of the file. If offset is greater than or
         equal to the size of the file, the status, NFS3_OK, is
         returned with count set to 0 and eof set to TRUE,
         subject to access permissions checking.
Top   ToC   RFC1813 - Page 47
      count
         The number of bytes of data that are to be read. If
         count is 0, the READ will succeed and return 0 bytes of
         data, subject to access permissions checking. count
         must be less than or equal to the value of the rtmax
         field in the FSINFO reply structure for the file system
         that contains file. If greater, the server may return
         only rtmax bytes, resulting in a short read.

      On successful return, READ3res.status is NFS3_OK and
      READ3res.resok contains:

      file_attributes
         The attributes of the file on completion of the read.

      count
         The number of bytes of data returned by the read.

      eof
         If the read ended at the end-of-file (formally, in a
         correctly formed READ request, if READ3args.offset plus
         READ3resok.count is equal to the size of the file), eof
         is returned as TRUE; otherwise it is FALSE. A
         successful READ of an empty file will always return eof
         as TRUE.

      data
         The counted data read from the file.

      Otherwise, READ3res.status contains the error on failure
      and READ3res.resfail contains the following:

      file_attributes
         The post-operation attributes of the file.

   IMPLEMENTATION

      The nfsdata type used for the READ and WRITE operations in
      the NFS version 2 protocol defining the data portion of a
      request or reply has been changed to a variable-length
      opaque byte array.  The maximum size allowed by the
      protocol is now limited by what XDR and underlying
      transports will allow. There are no artificial limits
      imposed by the NFS version 3 protocol. Consult the FSINFO
      procedure description for details.
Top   ToC   RFC1813 - Page 48
      It is possible for the server to return fewer than count
      bytes of data. If the server returns less than the count
      requested and eof set to FALSE, the client should issue
      another READ to get the remaining data. A server may
      return less data than requested under several
      circumstances. The file may have been truncated by another
      client or perhaps on the server itself, changing the file
      size from what the requesting client believes to be the
      case. This would reduce the actual amount of data
      available to the client. It is possible that the server
      may back off the transfer size and reduce the read request
      return. Server resource exhaustion may also occur
      necessitating a smaller read return.

      Some NFS version 2 protocol client implementations chose
      to interpret a short read response as indicating EOF. The
      addition of the eof flag in the NFS version 3 protocol
      provides a correct way of handling EOF.

      Some NFS version 2 protocol server implementations
      incorrectly returned NFSERR_ISDIR if the file system
      object type was not a regular file. The correct return
      value for the NFS version 3 protocol is NFS3ERR_INVAL.

   ERRORS

      NFS3ERR_IO
      NFS3ERR_NXIO
      NFS3ERR_ACCES
      NFS3ERR_INVAL
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
      NFS3ERR_SERVERFAULT

   SEE ALSO

      READLINK.
Top   ToC   RFC1813 - Page 49
3.3.7 Procedure 7: WRITE - Write to file

   SYNOPSIS

      WRITE3res NFSPROC3_WRITE(WRITE3args) = 7;

      enum stable_how {
           UNSTABLE  = 0,
           DATA_SYNC = 1,
           FILE_SYNC = 2
      };

      struct WRITE3args {
           nfs_fh3     file;
           offset3     offset;
           count3      count;
           stable_how  stable;
           opaque      data<>;
      };

      struct WRITE3resok {
           wcc_data    file_wcc;
           count3      count;
           stable_how  committed;
           writeverf3  verf;
      };

      struct WRITE3resfail {
           wcc_data    file_wcc;
      };

      union WRITE3res switch (nfsstat3 status) {
      case NFS3_OK:
           WRITE3resok    resok;
      default:
           WRITE3resfail  resfail;
      };

   DESCRIPTION

      Procedure WRITE writes data to a file. On entry, the
      arguments in WRITE3args are:

      file
         The file handle for the file to which data is to be
         written.  This must identify a file system object of
         type, NF3REG.
Top   ToC   RFC1813 - Page 50
      offset
         The position within the file at which the write is to
         begin.  An offset of 0 means to write data starting at
         the beginning of the file.

      count
         The number of bytes of data to be written. If count is
         0, the WRITE will succeed and return a count of 0,
         barring errors due to permissions checking. The size of
         data must be less than or equal to the value of the
         wtmax field in the FSINFO reply structure for the file
         system that contains file. If greater, the server may
         write only wtmax bytes, resulting in a short write.

      stable
         If stable is FILE_SYNC, the server must commit the data
         written plus all file system metadata to stable storage
         before returning results. This corresponds to the NFS
         version 2 protocol semantics. Any other behavior
         constitutes a protocol violation. If stable is
         DATA_SYNC, then the server must commit all of the data
         to stable storage and enough of the metadata to
         retrieve the data before returning.  The server
         implementor is free to implement DATA_SYNC in the same
         fashion as FILE_SYNC, but with a possible performance
         drop.  If stable is UNSTABLE, the server is free to
         commit any part of the data and the metadata to stable
         storage, including all or none, before returning a
         reply to the client. There is no guarantee whether or
         when any uncommitted data will subsequently be
         committed to stable storage. The only guarantees made
         by the server are that it will not destroy any data
         without changing the value of verf and that it will not
         commit the data and metadata at a level less than that
         requested by the client. See the discussion on COMMIT
         on page 92 for more information on if and when
         data is committed to stable storage.

      data
         The data to be written to the file.

      On successful return, WRITE3res.status is NFS3_OK and
      WRITE3res.resok contains:

      file_wcc
         Weak cache consistency data for the file. For a client
         that requires only the post-write file attributes,
         these can be found in file_wcc.after.
Top   ToC   RFC1813 - Page 51
      count
         The number of bytes of data written to the file. The
         server may write fewer bytes than requested. If so, the
         actual number of bytes written starting at location,
         offset, is returned.

      committed
         The server should return an indication of the level of
         commitment of the data and metadata via committed. If
         the server committed all data and metadata to stable
         storage, committed should be set to FILE_SYNC. If the
         level of commitment was at least as strong as
         DATA_SYNC, then committed should be set to DATA_SYNC.
         Otherwise, committed must be returned as UNSTABLE. If
         stable was FILE_SYNC, then committed must also be
         FILE_SYNC: anything else constitutes a protocol
         violation. If stable was DATA_SYNC, then committed may
         be FILE_SYNC or DATA_SYNC: anything else constitutes a
         protocol violation. If stable was UNSTABLE, then
         committed may be either FILE_SYNC, DATA_SYNC, or
         UNSTABLE.

      verf
         This is a cookie that the client can use to determine
         whether the server has changed state between a call to
         WRITE and a subsequent call to either WRITE or COMMIT.
         This cookie must be consistent during a single instance
         of the NFS version 3 protocol service and must be
         unique between instances of the NFS version 3 protocol
         server, where uncommitted data may be lost.

      Otherwise, WRITE3res.status contains the error on failure
      and WRITE3res.resfail contains the following:

      file_wcc
         Weak cache consistency data for the file. For a client
         that requires only the post-write file attributes,
         these can be found in file_wcc.after. Even though the
         write failed, full wcc_data is returned to allow the
         client to determine whether the failed write resulted
         in any change to the file.

      If a client writes data to the server with the stable
      argument set to UNSTABLE and the reply yields a committed
      response of DATA_SYNC or UNSTABLE, the client will follow
      up some time in the future with a COMMIT operation to
      synchronize outstanding asynchronous data and metadata
      with the server's stable storage, barring client error. It
Top   ToC   RFC1813 - Page 52
      is possible that due to client crash or other error that a
      subsequent COMMIT will not be received by the server.

   IMPLEMENTATION

      The nfsdata type used for the READ and WRITE operations in
      the NFS version 2 protocol defining the data portion of a
      request or reply has been changed to a variable-length
      opaque byte array.  The maximum size allowed by the
      protocol is now limited by what XDR and underlying
      transports will allow. There are no artificial limits
      imposed by the NFS version 3 protocol. Consult the FSINFO
      procedure description for details.

      It is possible for the server to write fewer than count
      bytes of data. In this case, the server should not return
      an error unless no data was written at all. If the server
      writes less than count bytes, the client should issue
      another WRITE to write the remaining data.

      It is assumed that the act of writing data to a file will
      cause the mtime of the file to be updated. However, the
      mtime of the file should not be changed unless the
      contents of the file are changed.  Thus, a WRITE request
      with count set to 0 should not cause the mtime of the file
      to be updated.

      The NFS version 3 protocol introduces safe asynchronous
      writes.  The combination of WRITE with stable set to
      UNSTABLE followed by a COMMIT addresses the performance
      bottleneck found in the NFS version 2 protocol, the need
      to synchronously commit all writes to stable storage.

      The definition of stable storage has been historically a
      point of contention. The following expected properties of
      stable storage may help in resolving design issues in the
      implementation. Stable storage is persistent storage that
      survives:

      1. Repeated power failures.

      2. Hardware failures (of any board, power supply, and so on.).

      3. Repeated software crashes, including reboot cycle.

      This definition does not address failure of the stable
      storage module itself.
Top   ToC   RFC1813 - Page 53
      A cookie, verf, is defined to allow a client to detect
      different instances of an NFS version 3 protocol server
      over which cached, uncommitted data may be lost. In the
      most likely case, the verf allows the client to detect
      server reboots. This information is required so that the
      client can safely determine whether the server could have
      lost cached data. If the server fails unexpectedly and the
      client has uncommitted data from previous WRITE requests
      (done with the stable argument set to UNSTABLE and in
      which the result committed was returned as UNSTABLE as
      well) it may not have flushed cached data to stable
      storage. The burden of recovery is on the client and the
      client will need to retransmit the data to the server.

      A suggested verf cookie would be to use the time that the
      server was booted or the time the server was last started
      (if restarting the server without a reboot results in lost
      buffers).

      The committed field in the results allows the client to do
      more effective caching. If the server is committing all
      WRITE requests to stable storage, then it should return
      with committed set to FILE_SYNC, regardless of the value
      of the stable field in the arguments. A server that uses
      an NVRAM accelerator may choose to implement this policy.
      The client can use this to increase the effectiveness of
      the cache by discarding cached data that has already been
      committed on the server.

      Some implementations may return NFS3ERR_NOSPC instead of
      NFS3ERR_DQUOT when a user's quota is exceeded.

      Some NFS version 2 protocol server implementations
      incorrectly returned NFSERR_ISDIR if the file system
      object type was not a regular file. The correct return
      value for the NFS version 3 protocol is NFS3ERR_INVAL.

   ERRORS

      NFS3ERR_IO
      NFS3ERR_ACCES
      NFS3ERR_FBIG
      NFS3ERR_DQUOT
      NFS3ERR_NOSPC
      NFS3ERR_ROFS
      NFS3ERR_INVAL
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
Top   ToC   RFC1813 - Page 54
      NFS3ERR_SERVERFAULT

   SEE ALSO

      COMMIT.

3.3.8 Procedure 8: CREATE - Create a file

   SYNOPSIS

      CREATE3res NFSPROC3_CREATE(CREATE3args) = 8;

      enum createmode3 {
           UNCHECKED = 0,
           GUARDED   = 1,
           EXCLUSIVE = 2
      };

      union createhow3 switch (createmode3 mode) {
      case UNCHECKED:
      case GUARDED:
           sattr3       obj_attributes;
      case EXCLUSIVE:
           createverf3  verf;
      };

      struct CREATE3args {
           diropargs3   where;
           createhow3   how;
      };

      struct CREATE3resok {
           post_op_fh3   obj;
           post_op_attr  obj_attributes;
           wcc_data      dir_wcc;
      };

      struct CREATE3resfail {
           wcc_data      dir_wcc;
      };

      union CREATE3res switch (nfsstat3 status) {
      case NFS3_OK:
           CREATE3resok    resok;
      default:
           CREATE3resfail  resfail;
      };
Top   ToC   RFC1813 - Page 55
   DESCRIPTION

      Procedure CREATE creates a regular file. On entry, the
      arguments in CREATE3args are:

      where
         The location of the file to be created:

         dir
            The file handle for the directory in which the file
            is to be created.

         name
            The name that is to be associated with the created
            file.  Refer to General comments on filenames on
            page 30.

      When creating a regular file, there are three ways to
      create the file as defined by:

      how
         A discriminated union describing how the server is to
         handle the file creation along with the appropriate
         attributes:

      mode
         One of UNCHECKED, GUARDED, and EXCLUSIVE. UNCHECKED
         means that the file should be created without checking
         for the existence of a duplicate file in the same
         directory. In this case, how.obj_attributes is a sattr3
         describing the initial attributes for the file. GUARDED
         specifies that the server should check for the presence
         of a duplicate file before performing the create and
         should fail the request with NFS3ERR_EXIST if a
         duplicate file exists. If the file does not exist, the
         request is performed as described for UNCHECKED.
         EXCLUSIVE specifies that the server is to follow
         exclusive creation semantics, using the verifier to
         ensure exclusive creation of the target. No attributes
         may be provided in this case, since the server may use
         the target file metadata to store the createverf3
         verifier.

      On successful return, CREATE3res.status is NFS3_OK and the
      results in CREATE3res.resok are:

      obj
         The file handle of the newly created regular file.
Top   ToC   RFC1813 - Page 56
      obj_attributes
         The attributes of the regular file just created.

      dir_wcc
         Weak cache consistency data for the directory,
         where.dir. For a client that requires on the
         post-CREATE directory attributes, these can be found in
         dir_wcc.after.

      Otherwise, CREATE3res.status contains the error on failure
      and CREATE3res.resfail contains the following:

      dir_wcc
         Weak cache consistency data for the directory,
         where.dir. For a client that requires only the
         post-CREATE directory attributes, these can be found in
         dir_wcc.after. Even though the CREATE failed, full
         wcc_data is returned to allow the client to determine
         whether the failing CREATE resulted in any change to
         the directory.

   IMPLEMENTATION

      Unlike the NFS version 2 protocol, in which certain fields
      in the initial attributes structure were overloaded to
      indicate creation of devices and FIFOs in addition to
      regular files, this procedure only supports the creation
      of regular files. The MKNOD procedure was introduced in
      the NFS version 3 protocol to handle creation of devices
      and FIFOs. Implementations should have no reason in the
      NFS version 3 protocol to overload CREATE semantics.

      One aspect of the NFS version 3 protocol CREATE procedure
      warrants particularly careful consideration: the mechanism
      introduced to support the reliable exclusive creation of
      regular files. The mechanism comes into play when how.mode
      is EXCLUSIVE.  In this case, how.verf contains a verifier
      that can reasonably be expected to be unique.  A
      combination of a client identifier, perhaps the client
      network address, and a unique number generated by the
      client, perhaps the RPC transaction identifier, may be
      appropriate.

      If the file does not exist, the server creates the file
      and stores the verifier in stable storage. For file
      systems that do not provide a mechanism for the storage of
      arbitrary file attributes, the server may use one or more
      elements of the file metadata to store the verifier. The
Top   ToC   RFC1813 - Page 57
      verifier must be stored in stable storage to prevent
      erroneous failure on retransmission of the request. It is
      assumed that an exclusive create is being performed
      because exclusive semantics are critical to the
      application. Because of the expected usage, exclusive
      CREATE does not rely solely on the normally volatile
      duplicate request cache for storage of the verifier. The
      duplicate request cache in volatile storage does not
      survive a crash and may actually flush on a long network
      partition, opening failure windows.  In the UNIX local
      file system environment, the expected storage location for
      the verifier on creation is the metadata (time stamps) of
      the file. For this reason, an exclusive file create may
      not include initial attributes because the server would
      have nowhere to store the verifier.

      If the server can not support these exclusive create
      semantics, possibly because of the requirement to commit
      the verifier to stable storage, it should fail the CREATE
      request with the error, NFS3ERR_NOTSUPP.

      During an exclusive CREATE request, if the file already
      exists, the server reconstructs the file's verifier and
      compares it with the verifier in the request. If they
      match, the server treats the request as a success. The
      request is presumed to be a duplicate of an earlier,
      successful request for which the reply was lost and that
      the server duplicate request cache mechanism did not
      detect. If the verifiers do not match, the request is
      rejected with the status, NFS3ERR_EXIST.

      Once the client has performed a successful exclusive
      create, it must issue a SETATTR to set the correct file
      attributes.  Until it does so, it should not rely upon any
      of the file attributes, since the server implementation
      may need to overload file metadata to store the verifier.

      Use of the GUARDED attribute does not provide exactly-once
      semantics.  In particular, if a reply is lost and the
      server does not detect the retransmission of the request,
      the procedure can fail with NFS3ERR_EXIST, even though the
      create was performed successfully.

      Refer to General comments on filenames on page 30.
Top   ToC   RFC1813 - Page 58
   ERRORS

      NFS3ERR_IO
      NFS3ERR_ACCES
      NFS3ERR_EXIST
      NFS3ERR_NOTDIR
      NFS3ERR_NOSPC
      NFS3ERR_ROFS
      NFS3ERR_NAMETOOLONG
      NFS3ERR_DQUOT
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
      NFS3ERR_NOTSUPP
      NFS3ERR_SERVERFAULT

   SEE ALSO

      MKDIR, SYMLINK, MKNOD, and PATHCONF.

3.3.9 Procedure 9: MKDIR - Create a directory

   SYNOPSIS

      MKDIR3res NFSPROC3_MKDIR(MKDIR3args) = 9;

      struct MKDIR3args {
           diropargs3   where;
           sattr3       attributes;
      };

      struct MKDIR3resok {
           post_op_fh3   obj;
           post_op_attr  obj_attributes;
           wcc_data      dir_wcc;
      };

      struct MKDIR3resfail {
           wcc_data      dir_wcc;
      };

      union MKDIR3res switch (nfsstat3 status) {
      case NFS3_OK:
           MKDIR3resok   resok;
      default:
           MKDIR3resfail resfail;
      };
Top   ToC   RFC1813 - Page 59
   DESCRIPTION

      Procedure MKDIR creates a new subdirectory. On entry, the
      arguments in MKDIR3args are:

      where
         The location of the subdirectory to be created:

         dir
            The file handle for the directory in which the
            subdirectory is to be created.

         name
            The name that is to be associated with the created
            subdirectory. Refer to General comments on filenames
            on page 30.

      attributes
         The initial attributes for the subdirectory.

      On successful return, MKDIR3res.status is NFS3_OK and the
      results in MKDIR3res.resok are:

      obj
         The file handle for the newly created directory.

      obj_attributes
         The attributes for the newly created subdirectory.

      dir_wcc
         Weak cache consistency data for the directory,
         where.dir. For a client that requires only the
         post-MKDIR directory attributes, these can be found in
         dir_wcc.after.

      Otherwise, MKDIR3res.status contains the error on failure
      and MKDIR3res.resfail contains the following:

      dir_wcc
         Weak cache consistency data for the directory,
         where.dir. For a client that requires only the
         post-MKDIR directory attributes, these can be found in
         dir_wcc.after. Even though the MKDIR failed, full
         wcc_data is returned to allow the client to determine
         whether the failing MKDIR resulted in any change to the
         directory.
Top   ToC   RFC1813 - Page 60
   IMPLEMENTATION

      Many server implementations will not allow the filenames,
      "." or "..", to be used as targets in a MKDIR operation.
      In this case, the server should return NFS3ERR_EXIST.
      Refer to General comments on filenames on page 30.

   ERRORS

      NFS3ERR_IO
      NFS3ERR_ACCES
      NFS3ERR_EXIST
      NFS3ERR_NOTDIR
      NFS3ERR_NOSPC
      NFS3ERR_ROFS
      NFS3ERR_NAMETOOLONG
      NFS3ERR_DQUOT
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
      NFS3ERR_NOTSUPP
      NFS3ERR_SERVERFAULT

   SEE ALSO

      CREATE, SYMLINK, MKNOD, and PATHCONF.
Top   ToC   RFC1813 - Page 61
3.3.10 Procedure 10: SYMLINK - Create a symbolic link

   SYNOPSIS

      SYMLINK3res NFSPROC3_SYMLINK(SYMLINK3args) = 10;

      struct symlinkdata3 {
           sattr3    symlink_attributes;
           nfspath3  symlink_data;
      };

      struct SYMLINK3args {
           diropargs3    where;
           symlinkdata3  symlink;
      };

      struct SYMLINK3resok {
           post_op_fh3   obj;
           post_op_attr  obj_attributes;
           wcc_data      dir_wcc;
      };

      struct SYMLINK3resfail {
           wcc_data      dir_wcc;
      };

      union SYMLINK3res switch (nfsstat3 status) {
      case NFS3_OK:
           SYMLINK3resok   resok;
      default:
           SYMLINK3resfail resfail;
      };

   DESCRIPTION

      Procedure SYMLINK creates a new symbolic link. On entry,
      the arguments in SYMLINK3args are:

      where
         The location of the symbolic link to be created:

         dir
            The file handle for the directory in which the
            symbolic link is to be created.
Top   ToC   RFC1813 - Page 62
         name
            The name that is to be associated with the created
            symbolic link. Refer to General comments on
            filenames on page 30.

      symlink
         The symbolic link to create:

         symlink_attributes
            The initial attributes for the symbolic link.

         symlink_data
            The string containing the symbolic link data.

      On successful return, SYMLINK3res.status is NFS3_OK and
      SYMLINK3res.resok contains:

      obj
         The file handle for the newly created symbolic link.

      obj_attributes
         The attributes for the newly created symbolic link.

      dir_wcc
         Weak cache consistency data for the directory,
         where.dir. For a client that requires only the
         post-SYMLINK directory attributes, these can be found
         in dir_wcc.after.

      Otherwise, SYMLINK3res.status contains the error on
      failure and SYMLINK3res.resfail contains the following:

      dir_wcc
         Weak cache consistency data for the directory,
         where.dir. For a client that requires only the
         post-SYMLINK directory attributes, these can be found
         in dir_wcc.after. Even though the SYMLINK failed, full
         wcc_data is returned to allow the client to determine
         whether the failing SYMLINK changed the directory.

   IMPLEMENTATION

      Refer to General comments on filenames on page 30.

      For symbolic links, the actual file system node and its
      contents are expected to be created in a single atomic
      operation.  That is, once the symbolic link is visible,
      there must not be a window where a READLINK would fail or
Top   ToC   RFC1813 - Page 63
      return incorrect data.

   ERRORS

      NFS3ERR_IO
      NFS3ERR_ACCES
      NFS3ERR_EXIST
      NFS3ERR_NOTDIR
      NFS3ERR_NOSPC
      NFS3ERR_ROFS
      NFS3ERR_NAMETOOLONG
      NFS3ERR_DQUOT
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
      NFS3ERR_NOTSUPP
      NFS3ERR_SERVERFAULT

   SEE ALSO

      READLINK, CREATE, MKDIR, MKNOD, FSINFO, and PATHCONF.

3.3.11 Procedure 11: MKNOD - Create a special device

   SYNOPSIS

      MKNOD3res NFSPROC3_MKNOD(MKNOD3args) = 11;

      struct devicedata3 {
           sattr3     dev_attributes;
           specdata3  spec;
      };

      union mknoddata3 switch (ftype3 type) {
      case NF3CHR:
      case NF3BLK:
           devicedata3  device;
      case NF3SOCK:
      case NF3FIFO:
           sattr3       pipe_attributes;
      default:
           void;
      };

      struct MKNOD3args {
           diropargs3   where;
           mknoddata3   what;
      };
Top   ToC   RFC1813 - Page 64
      struct MKNOD3resok {
           post_op_fh3   obj;
           post_op_attr  obj_attributes;
           wcc_data      dir_wcc;
      };

      struct MKNOD3resfail {
           wcc_data      dir_wcc;
      };

      union MKNOD3res switch (nfsstat3 status) {
      case NFS3_OK:
           MKNOD3resok   resok;
      default:
           MKNOD3resfail resfail;
      };

   DESCRIPTION

      Procedure MKNOD creates a new special file of the type,
      what.type.  Special files can be device files or named
      pipes.  On entry, the arguments in MKNOD3args are:

      where
         The location of the special file to be created:

         dir
            The file handle for the directory in which the
            special file is to be created.

         name
            The name that is to be associated with the created
            special file. Refer to General comments on filenames
            on page 30.

      what
         A discriminated union identifying the type of the
         special file to be created along with the data and
         attributes appropriate to the type of the special
         file:

         type
            The type of the object to be created.

      When creating a character special file (what.type is
      NF3CHR) or a block special file (what.type is NF3BLK),
      what includes:
Top   ToC   RFC1813 - Page 65
      device
         A structure devicedata3 with the following components:

         dev_attributes
            The initial attributes for the special file.

         spec
            The major number stored in device.spec.specdata1 and
            the minor number stored in device.spec.specdata2.

      When creating a socket (what.type is NF3SOCK) or a FIFO
      (what.type is NF3FIFO), what includes:

         pipe_attributes
            The initial attributes for the special file.

      On successful return, MKNOD3res.status is NFS3_OK and
      MKNOD3res.resok contains:

      obj
         The file handle for the newly created special file.

      obj_attributes
         The attributes for the newly created special file.

      dir_wcc
         Weak cache consistency data for the directory,
         where.dir. For a client that requires only the
         post-MKNOD directory attributes, these can be found in
         dir_wcc.after.

      Otherwise, MKNOD3res.status contains the error on failure
      and MKNOD3res.resfail contains the following:

      dir_wcc
         Weak cache consistency data for the directory,
         where.dir. For a client that requires only the
         post-MKNOD directory attributes, these can be found in
         dir_wcc.after. Even though the MKNOD failed, full
         wcc_data is returned to allow the client to determine
         whether the failing MKNOD changed the directory.

   IMPLEMENTATION

      Refer to General comments on filenames on page 30.

      Without explicit support for special file type creation in
      the NFS version 2 protocol, fields in the CREATE arguments
Top   ToC   RFC1813 - Page 66
      were overloaded to indicate creation of certain types of
      objects.  This overloading is not necessary in the NFS
      version 3 protocol.

      If the server does not support any of the defined types,
      the error, NFS3ERR_NOTSUPP, should be returned. Otherwise,
      if the server does not support the target type or the
      target type is illegal, the error, NFS3ERR_BADTYPE, should
      be returned. Note that NF3REG, NF3DIR, and NF3LNK are
      illegal types for MKNOD. The procedures, CREATE, MKDIR,
      and SYMLINK should be used to create these file types,
      respectively, instead of MKNOD.

   ERRORS

      NFS3ERR_IO
      NFS3ERR_ACCES
      NFS3ERR_EXIST
      NFS3ERR_NOTDIR
      NFS3ERR_NOSPC
      NFS3ERR_ROFS
      NFS3ERR_NAMETOOLONG
      NFS3ERR_DQUOT
      NFS3ERR_STALE
      NFS3ERR_BADHANDLE
      NFS3ERR_NOTSUPP
      NFS3ERR_SERVERFAULT
      NFS3ERR_BADTYPE

   SEE ALSO

      CREATE, MKDIR, SYMLINK, and PATHCONF.


(next page on part 3)

Next Section