9. Pip Header Server Two new components of the Pip Architecture are the Pip/IP Translator and the Pip Header Server. The Pip/IP Translator is only used for transition from IP to Pip, and otherwise would not be necessary. The Pip Header Server, however, is a new architectural component. The purpose of the Pip Header Server is to form a Pip Header. It is useful to form the Pip header in a separate box because 1) in the future (as policy routing matures, for instance), significant amounts of information may be needed to form the Pip header--too much information to distribute to all hosts, and 2) it won't be possible to evolve all hosts at the same time, so the existence of a separate box that can spoon-feed Pip headers to old hosts is necessary. (It is impossible to guarantee that no modification of Pip hosts is necessary for any potential evolution, but being able to form the header in a server, and hand it to an outdated host, is a large step in the right direction.) (Note that policy routing architectures commonly if not universally require the use of some kind of "route server" for calculating policy routes. The Pip Header Server is, among other things, just this server. Thus, the Pip Header Server does not so much result from the fact that Pip itself is more complex than IP or other "IPv7" proposals. Rather, the Pip Header Server reflects the fact that the Pip Architecture has more functionality than ROAD architectures supported by the simpler proposals.) We note that for the near-term architecture hosts themselves will by-and-large have the capability of forming Pip headers. The exception to this will be the case where the Pip Header Server wishes to monitor inter-domain routing to enhance provider selection. Thus, the Pip Header Server role will be largely limited to evolution (see section 16). 9.1 Forming Pip Headers Forming a Pip header is more complex than forming an IP header because there are many more choices to make. At a minimum, one of multiple Pip Addresses (both source and destination) must be chosen [14]. In the near future, it will also be necessary to choose a TOS.
After DNS information about the destination has been received, the the following information is available to the Pip header formation function. 1. From DNS: The destination's providers (either directly connected or nearby enough to justify making a policy decision about), and the names, types, and access restrictions of those providers. 2. From the source host: The application type (and thus, the desired service), and the user access restriction classes. 3. From local configuration: The source's providers, and the names, types, and access restrictions of those providers. 4. Optionally from inter-domain routing: The routes chosen by inter-domain to all top level providers. (Note that inter-domain routing in the Pip near-term architecture is path-vector. Because of this, the Pip Header Server does not obtain enough information from inter-domain routing to form a policy route. When the technology to do this matures, it can be installed into Pip Header Servers.) The inter-domain routing information is optional. If it is used, then probably a Pip Header Server is necessary, to limit this information to a small number of systems. There may also be arbitrary policy information available to the Pip header formation function. This architecture does not specify any such information. The Pip header formation function then goes through a process of forming an ordered list of source/destination Pip Addresses to use. The ordering is based on knowledge of the application service requirements, the service provided by the source providers, guesses or learned information about the service provided by the destination providers or by source/destination provider pairs, and the cost of using source providers to reach destination providers. It is assumed that the sophistication of forming the ordered list will grow as experienced is gained with internet commercialization and real-time services. The Pip Header formation function then returns the ordered pairs of source and destination addresses to the source host in the PHP response message, along with an indication of what kind of exit routing to use with each pair. Any additional information, such as PDN Address, is also returned. With this information, the source host can now establish communications and properly respond to PCMP messages. Based on information received from PCMP messages,
particularly PCMP Packet Not Delivered messages but also Mobile Host messages, the host is able to choose appropriately from the ordered list. Note that if Pip evolves to the point where the Transit Part of the Pip header is no longer compatible with the current Transit Part, and the querying host has not been updated to understand the new Transit Part, then the PHP response message contains a bit map of the Transit Part. The host puts this bit map into the Transit Part of the transmitted Pip header even though it does not understand the semantics of the Transit Part. The Host Version field indicates to the Pip Header Server what kinds of transit parts the host can understand. 9.2 Pip Header Protocol (PHP) The Pip Header Protocol (PHP) is a simple query/response protocol used to exchange information between the Pip host and the Pip Header Server [6]. In the query, the Pip host includes (among other things) the domain name of the destination it wishes to send Pip packets to. (Thus, the PHP query serves as a substitute for the DNS query.) The PHP query also contains 1) User Access Restriction Classes, 2) Application Types, and 3) host version. The host version tells the Pip Header Server what features are installed in the host. Thus, the Pip Header Server is able to determine if the host can format its own Pip header based on DNS information, or whether the Pip Header Server needs to do it on behalf of the host. In the future, the PHP query will also contain desired TOS (possibly in lieu of Application Type). (Note that this information could come from the application. Thus, the application interface to PHP (the equivalent of gethostbyname()) must pass this information.) 9.3 Application Interface In order for a Pip host to generate the information required in the PHP query, there must be a way for the application to convey the information to the PHP software. The host architecture for doing this is as follows. A local "Pip Header Client" (the source host analog to the Pip Header Server) is called by the application (instead of the current gethostbyname()). The application provides the Pip Header Client with either the destination host domain name or the destination host Pip ID, and other pertinent information such as user access restriction class and TOS. The Pip Header Client, if it doesn't have the information cached locally, queries the Pip Header Server and receives an answer. (Remember that the Pip Header Server can be co-
resident with the host.) Once the Pip Header Client has determined what the Pip header(s) are, it assigns a local handle to the headers, returns the handle to the application, and configures the Pip packet processing engine with the handle and related Pip Headers. The application then issues packets to the Pip layer (via intervening layers such as transport) using the local handle. 10. Routing Algorithms in Pip This section discusses the routing algorithm for use with (hierarchical) Pip Addresses. The architecture for operating routing algorithms in Pip reflects the clean partitioning of routing contexts in the Pip header. Thus, routing in the Pip architecture is nicely modularized. Within the Hierarchical Pip Address, there are multiple hierarchical levels. Wherever two routers connect, or two levels interface (either in a single router or between routers), two decisions must be made: 1) what information should be exchanged (that is, what of one side's routing table should be propagated to the other side), and 2) what routing algorithm should be used to exchange the information? The first decision is discussed in section 10.1 below (Routing Information Filtering). The latter decision is discussed here. Conceptually, and to a large extent in practice, the routing algorithms at each level are cleanly partitioned. This partition is much like the partition between "egp" and "igp" level routing in IP, but with Pip it exists at each level of the hierarchy. At the top-level of the Pip Address hierarchy, a path-vector routing algorithm is used. Path-vector is more appropriate at the top level than link-state because path-vector does not require agreement between top-level entities (providers) on metrics in order to be loop-free. (Agreement between the providers is likely to result in better paths, but the Pip Architecture does not assume such agreement.) The top-level path-vector routing algorithm is based on IDRP, but enhanced to handle Pip addresses and Pip idiosyncrasies such as the Routing Context. At any level below the top level, it is a local decision as to what routing algorithm technology to run. However, the path-vector routing algorithm is generalized so that it can run at multiple levels of the Pip Address hierarchy. Thus, a lower level domain can choose to take advantage of the path-vector algorithm, or run another, such as a link-state algorithm. The modified version of
IDRP is called MLPV [10], for Multi-Level Path-Vector (pronounced "milpiv"). Normally, information is exchanged between two separate routing algorithms by virtue of the two algorithms co-existing in the same router. For instance, a border router is likely to participate in an exchange of routing information with provider routers, and still run the routing algorithm of the internal routers. If the two algorithms are different routing technologies (for instance, link-state versus distance-vector) then internal conversion translates information from one routing algorithm to the form of the other. In some cases, however, two routing algorithms that exchange information will exist in different routers, and will have to exchange information over a link. If these two algorithms are different technologies, then they need a common means of exchanging routing information. While strictly speaking this is a local matter, MLPV can also serve as the interface between two disparate routing algorithms. Thus, all routers should be able to run MLPV, if for no other reason than to exchange information with other, perhaps proprietary, routing protocols. MLPV is designed to be extendible with regards to the type of routes that it calculates. It uses the Pip Object parameter identification number space to identify what type of route is being advertised and calculated [9]. Thus, to add new types of routes (for instance, new types of service), it is only necessary to configure the routers to accept the new route type, define metrics for that type, and criteria for preferring one route of that type over another. 10.1 Routing Information Filtering Of course, the main point behind having hierarchical routing is so that information from one part of the hierarchy can be reduced when passed to another. In general, reduction (in the form of aggregation) takes place when passing information from the bottom of the hierarchy up. However, Pip uses tunneling and exit routing to, if desired, allow information from the top to be reduced when it goes down. When two routers become neighbors, they can determine what hierarchical levels they have in common by comparing Pip Addresses. For instance, if two neighbor routers have Pip Addresses 1.2.3,4 and 1.2.8,9.14 respectively, then they share levels 0 and 1, and are different at levels below that. (0 is the highest level, 1 is the next highest, and so on.) As a general rule, these two routers exchange level 0, level 1, and level 2 routing information, but not level 3 or lower routing information. In other words, both routers
know how to route to all things at the top level (level 0), how to route to all level 1 things with "1" as the level 0 prefix, and how to route to all level 2 things with "1.2" as the level 1 prefix. In the absence of other instructions, two routers will by default exchange information about all levels from the top down to the first level at which they have differing Pip Addresses. In practice, however, this default exchange is as likely to be followed as not. For instance, assume that 1.2.3,4 is a provider router, and 1.2.8,9.14 is a subscriber router. (Note that 1.2.8 is the prefix given the subscriber by the provider, thus the metalevel boundary indicated by the comma.) Assume also that the subscriber network is using destination-oriented transit-driven exit routing (see section 8.1). Finally, assume that router 1.2.8,9.14 is the subscriber's only entry point into provider 1 (other routers provide entry points to other providers). In this case, 1.2.8,9.14 does not need to know about level 2 or level 1 areas in the provider (that is, it does not need to know about 1.2.4..., 1.2.5..., or 1.3..., 1.4..., and so on). Thus, 1.2.8,9.14 should be configured to inform 1.2.3,4 that it does not need level 1 or 2 information. As another example, assume still that 1.2.3,4 is a provider and 1.2.8,9.14 is a subscriber. However, assume now that the subscriber network is using host-driven exit routing. In this case, the subscriber does not even need to know about level 0 information, because all exit routing is directed to the provider of choice, and having level 0 information therefore does not influence that choice. 11. Transition The transition scheme for Pip has two major components, 1) translation, and 2) encapsulation. Translation is required to map the Pip Address into the IP address and vice versa. Encapsulation is used for one Pip router (or host) to exchange packets with another Pip router (or host) by tunneling through intermediate IP routers. The Pip transition scheme is basically a set of techniques that allows existing IP "stuff" and Pip to coexist, but within the limitations of IP address depletion (though not within the limitations of IP scaling problems). By this I mean that an IP-only host can only exchange packets with other hosts in a domain where IP numbers are unique. Initially this domain includes all IP hosts, but eventually will include only hosts within a private domain. The IP "stuff" that can exist includes 1) whole IP domains, 2) individual IP hosts, 3) IP-oriented TCPs, and 4) IP-oriented applications.
11.1 Justification for Pip Transition Scheme Note that all transition to a bigger address require translation. It cannot be avoided. The major choices one must make when deciding on a translation scheme are: 1. Will we require a contiguous infrastructure consisting of the new protocol, or will we allow tunneling through whatever remains of the existing IP infrastructure at any point in time? 2. Will we allow global connectivity between IP machines after IP addresses are no longer globally unique, or not? (In other words, will we use a NAT scheme or not? [15]) Concerning question number 1; while it is desirable to move as quickly as possible to a contiguous Pip (or SIP or whatever) infrastructure, especially for purposes of improved scaling, it is fantasy to think that the whole infrastructure will cut over to Pip quickly. Furthermore, during the testing stages of Pip, it is highly desirable to be able to install Pip in any box anywhere, and by tunneling through IP, create a virtual Pip internet. Thus, it seems that the only reasonable answer to question number 1 is to allow tunneling. Concerning question number 2; it is highly desirable to avoid using a NAT scheme. A NAT (Network Address Translation) scheme is one whereby any two IP hosts can communicate, even though IP addresses are not globally unique. This is done by dynamically mapping non- unique IP addresses into unique ones in order to cross the infrastructure. NAT schemes have the problems of increased complexity to maintain the mappings, and of translating IP addresses that reside within application data structures (such as the PORT command in FTP). This having been said, it is conceivable that the new protocol will not be far enough along when IP addresses are no longer unique, and therefore a NAT scheme becomes necessary. It is possible to employ a NAT scheme at any time in the future without making it part of the intended transition scheme now. Thus, we can plan for a NATless transition now without preventing the potential use of NAT if it becomes necessary. 11.2 Architecture for Pip Transition Scheme The architecture for Pip Transition is that of a Pip infrastructure surrounded by IP-only "systems". The IP-only "systems" surrounding Pip can be whole IP domains, individual IP hosts, an old TCP in an otherwise Pip host, or an old application running on top of a Pip-
smart TCP. The Pip infrastructure will initially get its internal connectivity by tunneling through IP. Thus, any Pip box can be installed anywhere, and become part of the Pip infrastructure by configuration over a "virtual" IP. Of course, it is desirable that Pip boxes be directly connected to other Pip boxes, but very early on this is the exception rather than the rule. Two neighbor Pip systems tunneling through IP simply view IP as a "link layer" protocol, and encapsulate Pip over IP just as they would encapsulate Pip over any other link layer protocol. In particular, the hop-count field of Pip is not copied into the Time-to-Live field of IP. There is no automatic configuration of neighbor Pip systems over IP. Manual configuration (and careful "virtual topology" engineering) is required. Note that ICMP messages from a IP router in a tunnel is not translated into a PCMP message and sent on. ICMP messages are sinked at the translating router at the head of the tunnel. The information learned from such ICMP messages, however, may be used to determine unreachability of the other end of the tunnel, and may there result in PCMP message on later packets. In the remainder of this section, we do not distinguish between a virtual Pip infrastructure on IP, and a pure Pip infrastructure. Given the model of a Pip infrastructure surrounded by IP, there are 5 possible packet paths: 1. IP - IP 2. IP - Pip - IP 3. IP - Pip 4. Pip - IP 5. Pip - Pip The first three paths involve packets that originate at IP-only hosts. In order for an IP host to talk to any other host (IP or not), the other host must be addressable within the context of the IP host's 32-bit IP address. Initially, this "IP-unique" domain will include all IP hosts. When IP addresses become no longer unique, the IP-unique domain will include a subset of all hosts. At a minimum, this subset will include those hosts in the IP-host's private domain. However, it makes sense also to arrange for the set of all "public" hosts, basically anonymous ftp servers and mail gateways, to be in this subset. In other words, a portion of IP address space should be
set aside to remain globally unique, even though other parts of the address space are being reused. 11.3 Translation between Pip and IP packets Paths 2 and 4 involve translation from Pip to IP. This translation is straightforward, as all the information needed to create the IP addresses is in the Pip header. In particular, Pip IDs have an encoding that allows them to contain an IP address (again, one that is unique within an IP-unique domain). Whenever a packet path involves an IP host on either end, both hosts must have IP addresses. Thus, translating from Pip to IP is just a matter of extracting the IP addresses from the Pip IDs and forming an IP header. Translating from an IP header to a Pip header is more difficult, because the 32-bit IP address must be "translated" into a 64-bit Pip ID and a Pip Address. There is no algorithm for making this translation. A table mapping IP addresses (or, rather, network numbers) to Pip IDs and Pip Addresses is required. Since such a table must potentially map every IP address, we choose to use dynamic discovery and caching to maintain the table. We choose also to use DNS as the means of discovering the mappings. Thus, DNS contains records that map IP address to Pip ID and Pip Address. In the case where the host represented by the DNS record is a Pip host (packet path 3), the Pip ID and Pip Address are those of the host. In the case where the host represented by the DNS record is an IP-only host (packet paths 2 and 4), the Pip Address is that of the Pip/IP translating gateway that is used to reach the IP host. Thus, an IP-only domain must at least be able to return Pip information in its DNS records (or, the parent DNS domain must be able to do it on behalf of the child). With paths 2 and 3 (IP-Pip-IP and IP-Pip), the initial translating gateway (IP to Pip) makes the DNS query. It stores the IP packet while waiting for the answer. The query is an inverse address (in- addr) using the destination IP address. The translating gateway can cache the record for an arbitrarily long period, because if the mapping ever becomes invalid, a PCMP Invalid Address message flushes the cache entry. In the case of path 4 (Pip-IP), however, the Pip Address of the translating gateway is returned directly to the source host-- piggybacked on the DNS record that is normally returned. Thus this scheme incurs only a small incremental cost over the normal DNS query.
11.4 Translating between PCMP and ICMP The only ICMP/PCMP messages that are translated are the Destination Unreachable, Echo, and PTMU Exceeded messages. The portion of the offending IP/Pip header that is attached to the ICMP/PCMP message is not translated. 11.5 Translating between IP and Pip Routing Information It is not necessary to pass IP routing information into the Pip infrastructure. The mapping of IP address to Pip Address in DNS allows Pip to find the appropriate gateway to IP in the context of Pip addresses only. It is impossible to pass Pip routing information into IP routers, since IP routers cannot understand Pip addresses. IP domains must therefore use default routing to reach IP/Pip translators. 11.6 Old TCP and Application Binaries in Pip Hosts A Pip host can be expected to have an old TCP above it for a long time to come, and a new (Pip-smart) TCP can be expected to have old application binaries running over it for a long time to come. Thus, we must have some way of insuring that the TCP checksum is correctly calculated in the event that one or both ends is running Pip, and one or both ends has an old TCP binary. In addition, we must arrange to allow applications to interface with TCP using a 32-bit "address" only, even though those 32 bits get locally translated into Pip Addresses and IDs. As stated above, in all cases where a Pip host is talking to an IP- only host, the Pip host has a 32-bit IP address. This address is embedded in the Pip ID such that it can be identified as an IP address from inspection of the Pip ID alone. The TCP pseudo-header is calculated using the Payload Length and Protocol fields, and some or all of the Source and Dest Pip IDs. In the case where both Source and Dest Pip IDs are IP-based, only the 32-bit IP address is included in the pseudo-header checksum calculation. Otherwise, the full 64 bits are used. (Note that using the full Payload Length and Protocol fields does not fail when old TCP binaries are being used, because the values for those fields must be within the 16-bit and 8-bit limits for TCP to correctly operate.) The reason for only using 32 bits of the Pip ID in the case of both ends using an IP address is that an old TCP will use only 32 bits of some number to form the pseudo-header. If the entire 64 bits of the Pip ID were used, then there would be cases where no 32-bit number
could be used to insure that the correct checksum is calculated in all cases. Note that in the case of an old TCP on top of Pip, "Pip" (actually, a Pip daemon) must create a 32-bit number that can both be used to 1) allow the Pip layer to correctly associate a packet from the TCP layer with the right Pip header, and 2) cause the TCP layer to calculate the right checksum. (This number is created when the application initiates a DNS query. A Pip daemon intervenes in this request, calculates a 32 bit number that the application/TCP can use, and informs the Pip layer of the mapping between this 32 bit number and the full Pip header.) When the destination host is an IP only host, then this 32-bit number is nothing more than the IP address. When the destination host is a Pip host, then this 32-bit number is some number generated by Pip to "fool" the old TCP into generating the right checksum. This 32-bit number can normally be the same as the lower 32 bits of the Pip ID. However, it is possible that two or more active TCP connections is established to different hosts whose Pip IDs have the same lower 32 bits. In this case, the Pip layer must generate a different 32-bit number for each connection, but in such a way that the sum of the two 16-bit components of the 32-bit numbers are the same as the sum of the two 16-bit components of the lower 32 bits of the Pip IDs. In the case where an old Application wants to open a socket using an IP address handed to it (by the user or hard-coded), and not using a domain name, then it must be assumed that this IP address is valid within the IP-unique domain. To form a Pip ID out of this 32-bit number, the host appends the high-order 24 bits of its own Pip ID, plus the IP-address-identifier-byte value, to the 32-bit IP address. 11.7 Translating between Pip Capable and non-Pip Capable DNS Servers In addition to transitioning "Pip-layer" packets, it is necessary to transition DNS from non-Pip capable to Pip capable. During transition there will be name servers in DNS that only understand IP queries and those that understand both Pip and IP queries. This means there must be a mechanism for Pip resolvers to detect whether a name server is Pip capable, and vice versa. Also, a name server, if it provides recursive service, must be able to translate Pip requests to IP requests. (Pip-capable means a name server understands Pip and existing IP queries. It does not necessarily mean the name server uses the Pip protocol to communicate.) New resource records have been defined to hold Pip identifiers and addresses, and other information [1]. These resource records must be queried using a new opcode in the DNS query packet header. Existing
resource records can be queried using both the old and new header formats. Name servers that are not Pip-capable will respond with a format error to queries with the new opcode. Thus, a resolver can determine dynamically whether a name server is Pip-capable, by sending it a Pip query and noting the response. This only need be done once, when querying a server for the "first" time, and the outcome can be cached along with the name server's address. Using a new opcode for making Pip queries also helps name servers determine whether a resolver is Pip-capable (it is not always not obvious from the type of query made since many queries are common to to IP and Pip). Determining whether a resolver is Pip-capable is necessary when responding with address information that is not explicitly requested by the query. An important example of this is when a name server makes a referral to another name server in a response: if the request comes from a Pip resolver, name server addresses will be returned as Pip identifier/address resource records, otherwise the addresses will be returned as IP A resource records. Those servers that are Pip-capable and provide recursive service must translate Pip requests to IP requests when querying an IP name server. For most queries, this will just mean modifying the opcode value in the query header to reflect an IP query, rather than a Pip query. (Most queries are identical in IP and Pip.) Other queries, notably the query for Pip identifier/address information, must be translated into its IP counterpart, namely, an IP A query. On receipt of an answer from an IP name server, a Pip name server must translate the query header and question section back to its original, and format the answer appropriately. Again, for most queries, this will be a trivial operation, but responses containing IP addresses, either as a result of an explicit query or as additional information, must be formatted to appear as a valid Pip response. Pip-capable name servers that provide recursive name service should also translate IP address requests into Pip identifier/address requests when querying a Pip-capable name server. (A host's IP address can be deduced from the host's Pip identifier.) This enables a Pip-capable name server to cache all relevant addressing information about a Pip host in the first address query concerning the host. Caching partial information is undesirable since the name server, using the current DNS caching strategy, would return only the cached information on a future Pip request, and IP, rather than Pip, would be used to communicate with the destination host.
12. Pip Address and ID Auto-configuration One goal of Pip is to make networks as easy to administer as possible, especially with regards to hosts. Certain aspects of the Pip architecture make administration easier. For instance, the ID field provides a network layer "anchor" around which address changes can be administered. This section discusses three aspects of autoconfiguration; 1) domain-wide Pip Address prefix assignment, 2) host Pip Address assignment, and 3) host Pip ID assignment. 12.1 Pip Address Prefix Administration A central premise behind the use of provider-rooted hierarchical addresses is that domain-wide address prefix assignment and re- assignment is straight-forward. This section describes that process. Pip Address prefix administration limits required manual prefix configuration to DNS and border routers. This is the minimum required manual configuration possible, because both border routers and DNS must be configured with prefix information for other reasons. DNS must be configured with prefix information so that it can reply to address queries. DNS files are structured so that the prefix is administered in only one place (that is, every host record does not have to be changed to create a new prefix). Border routers must be configured with prefix information in order to advertise exit routes internally. Note in particular that no internal (non-border) routers or hosts need ever be manually configured with any externally derived addressing information. All internal routers that are expected to fall under a common provider-prefix must, however, be configured with a "group ID" taken from the Pip ID space. (This group ID is not a multicast ID per se. Rather, it is an identifier that allows prefix updates to be targetted to a specific set of routers.) Each border router is configured with the following information. 1. The type of exit routing for the domain. This tells the border router whether or not it needs to advertise external routes internally. 2. The address prefix of the providers that the border is directly connected to. This prefix information includes any metalevel boundaries above the subscriber/provider metalevel boundary (called simply the subscriber metalevel).
3. Other information about the provider (provider name, type, user access restriction classes). 4. A list of common-provider-prefix group IDs that should receive the auto-configuration information. (The default is that only systems that share a group ID with the border router will receive the information.) This information is injected into the intra-domain routing algorithm. It is automatically spread to all routers indicated by the group ID list. This way, the default behavior is for the information to be automatically constrained to the border router's "area". When a non-border router receives this information, it 1) records the route to the providers in its forwarding table, and 2) advertises the information to hosts in the router discovery protocol [8]. Thus hosts learn not only their complete address, but also information on how to do exit routing and on how to choose source addresses. 12.2 Host Autoconfiguration There are three phases of host autoconfiguration: 1. The host locally creates a flat unique Pip ID (probably globally unique but at least unique on the attached subnet). 2. The host learns its Pip Addresses. 3. The host optionally obtains a hierarchical, organizationally meaningful Pip ID and a domain name from a Pip ID/domain name assignment service. This service updates DNS. Item three is optional. If Pip ID and domain name assignment services are not installed, then the host must obtain its domain name and, if necessary, Pip ID, from static configuration. Each of the three phases are described below. 12.2.1 Host Initial Pip ID Creation When a host boots, it can form an ID based only on local information. If the host has an IEEE 802 number, either from an IEEE 802 interface or from an internal identifier, then it can create a globally unique Pip ID from the IEEE 802 Pip ID type [4]. Otherwise, the host can create an ID from the IEEE 802 space using its subnet (link layer) address. This latter ID is only guaranteed to be locally unique.
12.2.2 Host Pip Address Assignment Unless a host does not wish to use ID-tailed Pip Addresses (see section 4.1.2), host Pip Address assignment is trivial. (The near- term Pip Architecture doesn't specify a means for a host to obtain a non-ID-tailed Pip Address.) When a host attaches to a subnet, it learns the Pip Address of the attached routers through router discovery. The host simply adopts these Pip Addresses as its own. The Pip Address gets a packet to the host's subnet, and the host's Pip ID is used to route across the subnet. When the routers advertise new addresses (for instance, because of a new provider), the host adopts the new addresses. 12.2.3 Pip ID and Domain Name Assignment Once the host has obtained its Pip Addresses and an at-least- locally-unique Pip ID, it can exchange packets with an ID/Domain Name (ID/DN) assignment service. If the host locally created a globally unique Pip ID (using an IEEE 802 number), and the organization it belongs to does not use organizationally structured Pip IDs (which should normally be the case) then it only needs to obtain a domain name. The ID/DN assignment service is reachable at a well-known anycast address [4]. Thus, the host is able to start exchanging packets with the ID/DN assignment service without any additional configuration. If there is no ID/DN assignment service available, then the host must obtain it's organizational ID or DNS name in a non-automatic way. If the ID/DN assignment service is down, the host must temporarily suffice with just a Pip ID and Address. The host can periodically try to reach the ID/DN assignment service. The ID/DN assignment service must coordinate with DNS. When the ID/DN assignment service creates a new ID or domain name to assign to a new host, it must know which IDs and domain names are available for assignment. It must also update DNS with the new information. The design of this service is left for further study.
13. Pip Control Message Protocol (PCMP) The Pip analog to ICMP is PCMP [7]. The near-term Pip architecture defines the following PCMP messages: 1. Local Redirect 2. Packet Not Delivered 3. Echo 4. Parameter Problem 5. Router Discovery 6. PMTU Exceeded 7. Provider Redirect 8. Reformat Transit Part 9. Unknown Parameter 10. Host Mobility 11. Exit PDN Address The Local Redirect, Echo, and Parameter Problem PCMP messages operate almost identically to their ICMP counterparts. The Packet Not Delivered PCMP message serves the role of ICMP's Destination Unreachable. The Packet Not Delivered, has two major differences. First, it is more general in that it indicates the hierarchy level of unreachability (rather than explicit host, subnet, network unreachability as with IP). Second, it indicates when an address is known to be invalid, thus allowing for more intelligent use of DNS (see section 6.2). The Router Discovery PCMP message operates as ICMP's, with the exception that a host derives its Pip Address from it. The PMTU Exceeded message operates as ICMP's, with the exception that the Pip header size of the offending Packet is also given. This allows the source host transport to determine how much smaller the packet PMTU should be from the advertised subnet PMTU. Note that if an occasional option, such as the PDN Address option, needs to be attached to one of many packets, and that this option makes the packet larger than the PMTU, then it is not necessary to modify the
MTU coming from transport. Instead, that packet can be fragmented by the host's Pip forwarding engine. (Pip specifies fragmentation/reassembly for hosts but not for routers. The fragmentation information is in a Pip Option.) The Provider Redirect, Invalid Address, Reformat Transit Part, Unknown Parameter, Host Mobility, and Exit PDN Address PCMP messages are new. The Provider Redirect PCMP message is used to inform the source host of a preferable exit provider to use when provider-rooted, transit- driven exit routing is used (see section 8.1). The Invalid Address PCMP message is used to inform the source host that none of the IDs of the destination host match that of the Pip packet. The purpose of this message is to allow for authoritative DNS requests (see section 6.2). The Reformat Transit Part PCMP message has both near-term Pip architecture functions and evolution functions. Near-term, the Reformat Transit Part PCMP message is used to indicate to the source whether it has too few or too many layers of address in the Routing Directive (see section 8.2). Long-term, the Reformat Transit Part PCMP message is able to arbitrarily modify the transit part transmitted by the host, as encoded by a bit string. The Unknown Parameter PCMP message is used to inform the source host that the router does not understand a parameter in either the Handling Directive, the Routing Context, or the Transit Options. The purpose of this message is to assist evolution (see section 16.1). The Host Mobility PCMP message is sent by a host to inform another host (for instance, the host's Mobile Address Server) that it has a new address (see section 14). The main use of this packet is for host mobility, though it can be used to manage any address changes, such as because of a new prefix assignment. The Exit PDN Address PCMP message is used to manage the function whereby the source host informs the PDN entry router of the PDN Address of the exit PDN system (see section 15). When a router needs to send a PCMP message, it sends it to the source Pip Address. If the Pip header is in a tunnel, then the PCMP message is sent to the router that is the source of the tunnel. Depending on the situation, this may result in another PCMP message from the source of the tunnel to the true source (for instance, if the source of the tunnel finds that the dest of the tunnel can't be reached, it may send a Packet Not Delivered to the source host).
14. Host Mobility Depending on how security conscience a host is, and what security mechanisms a host has available, mobility can come from Pip "for free". If a host is willing to accept a packet by just looking at source and destination Pip ID, and if the host simply records the source Pip Address on any packet it receives as the appropriate return address to the source Pip ID, then mobility comes automatically. That is, when a mobile host gets a new Pip Address, it simply puts that address into the next packet it sends. When the other host receives it, it records the new Pip Address, and starts sending return packets to that address. The security aspect of this is that this type of operation leads to an easy way to spoof the (internet level) identity of a host. That is, absent any other security mechanisms, any host can write any Pip ID into a packet. (Cross- checking a source Pip ID against the source Pip Address at least makes spoofing of this sort as hard as with IP. This is discussed below.) The above simple host mobility mechanism does not work in the case where source and destination hosts obtain new Pip Addresses at the same time and the old Pip addresses no longer work, because neither is able to send its new address information directly to the other. Furthermore, if a host wishes to be more secure about authenticating the source Pip ID of a packet, then the above mechanism also is not satisfactory. In what follows, the complete host mobility mechanism is described. Pip uses the Mobile Host Server and the PCMP Host Mobility message to manage host mobility; The Mobile Host Server is a non-mobile host (or router acting as a host) that keeps track of the active address of a mobile host. The Pip ID and Address of the Mobile Host Server is configured into the mobile host, and in DNS. When a host X obtains information from DNS about a host Y, the Pip ID and Address of host Y's Mobile Host Server is among the information. (Also among the information is host Y's "permanent" address, if host Y has one. If host Y is so mobile that it doesn't have a permanent address, then no permanent address is returned by DNS. In particular, note that DNS is not intended to keep track of a mobile host's active address.) Given the destination host's (Y) permanent ID and Address, and the Mobile Host Server's permanent IDs and Addresses, the source host (X) proceedes as follows. X tries to establish communications with Y using one of the permanent addresses. If this fails (or if at any
time X cannot contact Y), X sends a PCMP Mobile Host message to the Mobile Host Server requesting the active address for Y. (Note that X can determine that it cannot contact Y from receipt of a PCMP Destination Unreachable or a PCMP Invalid Address message.) The Mobile Host Server responds to X with the active Pip Addresses of Y. (Of course, Y must inform its Mobile Host Server(s) of its active Pip Addresses when it knows them. This also is done using the PCMP Mobile Host message. Y also informs any hosts that it is actively communicating with, using either a regular Pip packet or with a PCMP Mobile Host message. Thus, usually X does not need to contact the Mobile Host Server to track Y's active address.) If the address that X already tried is among those returned by Y, then the source host has the option of either 1) continuing to try the same Pip Address, 2) trying another of Y's Pip Addresses, 3) waiting and querying the Mobile Host Server again, or 4) giving up. If the Mobile Host Server indicates that Y has new active Pip Addresses, then X chooses among these in the same manner that it chooses among multiple permanent Pip Addresses, and tries to contact Y. 14.1 PCMP Mobile Host message There are two types of PCMP Mobile Host messages, the query and the response. The query consists of the Pip ID of the host for which active Pip Address information is being requested. The response consists of a Pip ID, a sequence number, a set of Pip Addresses, and a signature field. The set of Pip Addresses includes all currently usable addresses of the host indicated by the Pip ID. Thus, the PCMP Mobile Host message can be used both to indicate a newly obtained address, and to indicate that a previous address is no longer active (by that addresses' absence in the set). The sequence number indicates which is the most recent information. It is needed to deal with the case where an older PCMP Mobile Host response is received after a newer one. The signature field is a value that derives from encrypting the sequence number and the set of Pip Addresses. For now, the encryption algorithms used, how to obtain keys, and so on are for further study.
14.2 Spoofing Pip IDs This section discusses host mechanisms for decreasing the probability of Pip ID spoofing. The mechanisms provided in this version of the near-term Pip architecture are no more secure than DNS itself. It is hoped that mechanisms and the corresponding infrastructure needed for better internetwork layer security can be installed with whatever new IP protocol is chosen. After a host makes a DNS query, it knows: 1. The destination host's Pip ID, 2. The destination host's permanent Pip Addresses, and 3. The destination host's Mobile Host Server's Pip ID and Addresses. Note that the DNS query can be a normal one (based on domain name) or an inverse query (based on Pip ID or Pip Address, though the latter is more likely to succeed, since the Pip ID may be flat and therefore not suitable for an inverse lookup). The inverse query is done when the host did not initiate the packet exchange, and therefore doesn't know the domain name of the remote (initiating) host. If the destination host is not mobile, then the source host can check the source Pip Address, compare it with those received from DNS, and reject the packet if it does not match. This gives spoof protection equal to that of IP. If the destination host is mobile and obtains new Pip Addresses, then the source host can check the validity of the new Pip Address by sending a PCMP Mobile Host query to the Mobile Host Server learned from DNS. The set of Pip Addresses learned from the Mobile Address Server is then used for subsequent validation. 15. Public Data Network (PDN) Address Discovery One of the problems with running Pip (or any internet protocol) over a PDN is that of the PDN entry Pip System discovering the PDN Address of the appropriate PDN exit Pip System. This problem is solved using ARP in small, broadcast LANs because the broadcast mechanism is relatively cheap. This solution is not available in the PDN case, where the number of attached systems is very large, and where broadcast is not available (or is not cheap if it is). For the case where the domain of the destination host is attached to a PDN, the problem is nicely solved by distributing the domain's exit PDN Address information in DNS, and then having the source host
convey the exit PDN Address to the PDN entry router in a Pip option. The DNS of the destination host's domain contains the PDN Addresses for the domain. When DNS returns a record for the destination host, the record associates zero or more PDN Addresses with each Pip Address. There can be more than one PDN address associated with a given PDN, and there can be more than on PDN associated with a given Pip Address. This latter case occurs when more than one hierarchical component of the Pip Address each represents a separate PDN. It is expected that in almost all cases, there will be only one (or none) PDN associated with any Pip address. (Note that, while the returned DNS record associates the PDN Addresses with a single Pip Address, in general the PDN Address will apply to a set of Pip Addresses--those for all hosts in the domain. The DNS files are structured to reflect this grouping in the same way that a single Pip Address prefix in DNS applies to many hosts. Therefore, every individual host entry in the DNS files does not need to have separate PDN Addresses typed in with it. This simplifies configuration of DNS.) When the source host sends the first packet to a given destination host, it attaches the PDN Addresses, one per PDN, to the packet in an option. (Note that, because of the way that options are processed in Pip packets, no router other than the entry PDN router need look at the option.) When the entry router receives this packet, it determines that it is the entry router based on the result of the FTIF Chain lookup. It retrieves the PDN Address from the option, and caches it locally. The cache entry can later by retrieved using either the destination Pip ID or the destination Pip Address as the cache index. The entry router sends the source host a PCMP Exit PDN Address message indicating that it has cached the information. If there are multiple exit PDN Addresses, then the source host can at this time inform the entry PDN router of all the PDN addresses. The entry PDN router can either choose from these to setup a connection, or cache them to recover from the case where the existing connection breaks. Finally, the entry PDN router delivers the Pip packet (perhaps by setting up a connection) to the PDN Address indicated. When a PDN entry router receives a Pip packet for which it doesn't know the exit PDN address (and has no other means of determining it, such as shortcut routing), it sends a PCMP Exit PDN Address query message to the originating host. This can happen if, for instance, routing changes and directs the packets to a new PDN entry router.
When the source host receives the PCMP Exit PDN Address query message, it transmits the PDN Addresses to the entry PDN router. 15.1 Notes on Carrying PDN Addresses in NSAPs The Pip use of PDN Address carriage in the option or PCP Exit PDN Address message solves two significant problems associated with the analogous use of PDN Address-based NSAPs. First, there is no existing agreement (standards or otherwise) that the existence of of a PDN Address in an NSAP address implies that the identified host is reachable behind the PDN Address. Thus, upon receiving such an NSAP, the entry PDN router does not know for sure, without explicit configuration information, whether or not the PDN Address can be used at the lower layer. Solution of this problem requires standards body agreement, perhaps be setting aside additional AFIs to mean "PDN Address with topological significance". The second, and more serious, problem is that a PDN Address in an NSAP does not necessarily scale well. This is best illustrated with the E.164 address. E.164 addresses can be used in many different network technologies--telephone network, BISDN, SMDS, Frame Relay, and other ATM. When a router receives a packet with an E.164-based NSAP, the E.164 address is in the most significant part of the NSAP address (that is, contains the highest level routing information). Thus, without a potentially significant amount of routing table information, the router does not know which network to send the packet to. Thus, unless E.164 addresses are assigned out in blocks according to provider network, it won't scale well. A related problem is that of how an entry PDN router knows that the PDN address is meant for the PDN it is attached to or some other PDN. With Pip, there is a one-to-one relationship between Pip Address prefix and PDN, so it is always known. With NSAPs, it is not clear without the potentially large routing tables discussed in the previous paragraph. 16. Evolution with Pip The fact that we call this architecture "near-term" implies that we expect it to evolve to other architectures. Thus it is important that we have a plan to evolve to these architectures. The Pip near- term architecture includes explicit mechanisms to support evolution. The key to evolution is being able to evolve any system at any time without destroying old functionality. Depending on what the new functionality is, it may be immediately useful to any system that installs it, or it may not become useful until a significant number
or even a majority of systems install it. None-the-less, it is necessary to be able to install it piece-wise. The Pip protocol itself supports evolution through the following mechanisms [2]: 1. Tunneling. This allows more up-to-date routers to tunnel less up-to-date routers, thus allowing for incremental router evolution. (Of course, by virtue of encapsulation, tunneling is always an evolution option, and indeed tunneling through IP is used in the Pip transition. However, Pip's tunneling encoding is efficient because it doesn't duplicate header information.) The only use for Pip tunneling in the Pip near-term architecture is to route packets through the internal routers of a transit domain when the internal routers have no external routing information. It is assumed that enhancements to the Pip Architecture that require tunneling will have their own means of indicating when forming a tunnel is necessary. 2. Host independence from routing information. Since a host can receive packets without understanding the routing content of the packet, routers can evolve without necessarily requiring hosts to evolve at the same pace. In order to allow hosts to send Pip packets without understanding the contents of the routing information (in the Transit Part), the Pip Header Server is able to "spoon-feed" the host the Pip header. If the Pip Header Server determines that the host is able to form its own Pip header (as will usually be the case with the near-term Pip architecture), the Pip Header is essentially a null function. It accepts a query from the host, passes it on to DNS, and returns the DNS information to the host. If the Pip Header Server determines that the host is not able to form its own Pip header, then the Pip Header Server forms one on behalf of the host. In one mode of operation, the Pip Header Server gives the host the values of some or all Transit Part fields, and the host constructs the Transit Part. This allows for evolution within the framework of the current Transit Part. In another mode, the Pip Header Server gives the host the Transit Part as a simple bit field. This allows for evolution outside the framework of the current Transit Part. In addition to the Pip Header Server being able to spoon-feed the host a Transit Part, routers are also able to spoon-feed hosts a Transit Part, in case the original Transit Part needs to be
modified, using the PCMP Reformat Transit Part message. 3. Separation of handling from routing. This allows one aspect to evolve independently of the other. 4. Flexible Handling Directive, Routing Context, and Options definition. This allows new handling, routing, and option types to be added and defunct ones to be removed over time (see section 16.1 below). 5. Fast and general options processing. Options processing in Pip is fast, both because not every router need look at every option, and because once a router decides it needs to look at an option, it can find it quickly (does not require a serial search). Thus the oft-heard argument that a new option can't be used because it will slow down processing in all routers goes away. Pip Options can be thought of as an extension of the Handling Directive (HD). The HD is used when the handling type is common, and can be encoded in a small space. The option is used otherwise. It is possible that a future option will influence routing, and thus the Option will be an extension of the RD as well. The RD, however, is rich enough that this is unlikely. 6. Generalized Routing Directive. Because the Routing Directive is so general, it is more likely that we can evolve routing and addressing semantics without having to redefine the Pip header or the forwarding machinery. 7. Host version number. This number tells what Pip functions a host has, such as which PCMP messages it can handle, so that routers can respond appropriately to a Pip packet received from a remote host. This supports the capability for routers to evolve ahead of hosts. (All Pip hosts will at least be able to handle all Pip near-term architecture functions.) The Host version number is also used by the Pip Header Server to determine the extent to which the Pip Header Server needs to format a header on behalf of the host. 8. Generalized Route Types. The IDRP/MLPV routing algorithm is generic with regards to the types of routes it can calculate. Thus, adding new route types is a matter of configuring routers to accept the new route type, defining metrics for the new route type, and defining criteria for selecting one route of the new type over another.
Note that none of these evolution features of Pip significantly slow down Pip header processing (as compared to other internet protocols). 16.1 Handling Directive (HD) and Routing Context (RC) Evolution Because the HD and RC are central to handling and routing of a Pip packet, the evolution of these aspects deserves more discussion. Both the HD and the RC fields contain multiple parameters. (In the case of the RC, the router treats the RC field as a single number, that is, ignores the fact that the RC is composed of multiple parameters. This allows for fast forwarding of Pip packets.) These HD and RC multiple parameters may be arranged in any fashion (can be any length, subject to the length of the HD and RC fields themselves, and can fall on arbitrary bit boundaries). Associated with the HD and RC are "Contents" fields that indicate what parameters are in the HD and RC fields, and where they are. (The Contents fields are basically version numbers, except that a higher "version" number is not considered to supersede a lower one. Typical types of parameters are address family, TOS value, queueing priority, and so on.) The Contents field is a single number, the value of which indicates the parameter set. The mapping of Contents field value to parameter set is configured manually. The procedure for establishing new HD or RC parameter sets (or, erasing old ones) is as follows. Some organization defines the new parameter set. This may involve defining a new parameter. If it does, then the new parameter is described as a Pip Object. A Pip Object is nothing more than a number space used to unambiguously identify a new parameter type, and a character string that describes it [9]. Thus, the new parameter set is described as a list of Pip Objects, and the bit locations in the HD/RC that each Pip Object occupies. The organization that defines the parameter set submits it for an official Contents field value. (It would be submitted to the standards body that has authority over Pip, currently the IAB.) If the new parameter set is approved, it is given a Contents value, and that value is published in a well known place (an RFC). Of course, network administrators are free to install or not install the new parameter set in their hosts and routers. In the case of a new RC parameter set, installation of the new parameter set does not necessarily require any new software, because any Pip routing protocol, such as IDRP/MLPV, is able to find routes according to the
new parameter set by appropriate configuration of routers. In the case of a new HD parameter set, however, new software is necessary--to execute the new handling. For new HD and RC parameters sets, systems that do not understand the new parameter set can still be configured to execute one of several default actions on the new parameter. These default action allow for some control over how new functions are introduced into Pip systems. The default actions are: 1. Ignore the unknown parameter, 2. Set unknown parameter to all 0's, 3. Set unknown parameter to all 1's, 4. Silently discard packet, 5. Discard packet with PCMP Parameter Unknown. Action 1 is used when it doesn't much matter if previous systems on a path have acted on the parameter or not. Actions 2 and 3 are used when systems should know whether a previous system has not understood the parameter. Actions 4 and 5 are used when something bad happens if not all systems understand the new parameter. 16.1.1 Options Evolution The evolution of Options is very similar to that of the HD and RC. Associated with the Options is an Options Present field that indicates in a single word which of up to 8 options are present in the Options Part. There is a Contents field associated with the Options Present field that indicates which subset of all possible options the Options Present field refers to. Contents field values are assigned in the same way as for the HD and RC Contents fields. The same 5 default actions used for the HD and RC also apply to the Options.
References [1] Thomson, F., "Use of DNS with Pip", Work in Progress. [2] Francis, P., "Pip Header Processing", Work in Progress. [3] Pip Address Assignment Specification, Work in Progress. [4] Francis, P., "Pip Identifiers", Work in Progress. [5] Pip Assigned Numbers, Work in Progress. [6] Pip Header Protocol, Work in Progress. [7] Francis, G., "PCMP: Pip Control Message Protocol", Work in Progress. [8] Pip Router Discovery Protocol, Work in Progress. [9] Pip Objects Specification, Work in Progress. [10] Rajagopolan, and P. Francis, "The Multi-Level Path Vector Routing Scheme", Work in Progress. [11] Francis, P., "Pip Address Conventions", Work in Progress. [12] Francis, P., "On the Assignment of Provider Rooted Addresses", Work in Progress. [13] Ballardie, Francis, P., and J. Crowcroft, "Core Based Trees (CBT), An Architecture for Scalable Inter-Domain Multicast Routing", Work in Progress. [14] Franics, P., "Pip Host Operation", Work in Progress. [15] Egevang, K., and P. Francis, "The IP Network Address Translator (NAT)", RFC 1631, Cray Communications, NTT, May 1994. Notes on the References: As of the publication of this RFC, a version of [12], titled "Comparison of Geographic and Provider-rooted Internet Addressing," was submitted to ISOC INET 94 in Prague. Reference [13] was published at ACM SIGCOMM 93 in San Francisco under the title "An Architecture for Scalable Inter-Domain Multicast Routing". Security Considerations Security issues are not discussed in this memo. Author's Address: Paul Francis NTT Software Lab 3-9-11 Midori-cho Musashino-shi Tokyo 180 Japan Phone: +81-422-59-3843 Fax +81-422-59-3765 EMail: francis@cactus.ntt.jp