Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 7683

Diameter Overload Indication Conveyance

Pages: 42
Proposed Standard
Errata
Updated by:  8581
Part 1 of 2 – Pages 1 to 23
None   None   Next

Top   ToC   RFC7683 - Page 1
Internet Engineering Task Force (IETF)                  J. Korhonen, Ed.
Request for Comments: 7683                          Broadcom Corporation
Category: Standards Track                                S. Donovan, Ed.
ISSN: 2070-1721                                              B. Campbell
                                                                  Oracle
                                                               L. Morand
                                                             Orange Labs
                                                            October 2015


                Diameter Overload Indication Conveyance

Abstract

This specification defines a base solution for Diameter overload control, referred to as Diameter Overload Indication Conveyance (DOIC). Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7683. Copyright Notice Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Top   ToC   RFC7683 - Page 2

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology and Abbreviations . . . . . . . . . . . . . . . . 3 3. Conventions Used in This Document . . . . . . . . . . . . . . 5 4. Solution Overview . . . . . . . . . . . . . . . . . . . . . . 5 4.1. Piggybacking . . . . . . . . . . . . . . . . . . . . . . 6 4.2. DOIC Capability Announcement . . . . . . . . . . . . . . 7 4.3. DOIC Overload Condition Reporting . . . . . . . . . . . . 9 4.4. DOIC Extensibility . . . . . . . . . . . . . . . . . . . 11 4.5. Simplified Example Architecture . . . . . . . . . . . . . 12 5. Solution Procedures . . . . . . . . . . . . . . . . . . . . . 12 5.1. Capability Announcement . . . . . . . . . . . . . . . . . 12 5.1.1. Reacting Node Behavior . . . . . . . . . . . . . . . 13 5.1.2. Reporting Node Behavior . . . . . . . . . . . . . . . 13 5.1.3. Agent Behavior . . . . . . . . . . . . . . . . . . . 14 5.2. Overload Report Processing . . . . . . . . . . . . . . . 15 5.2.1. Overload Control State . . . . . . . . . . . . . . . 15 5.2.2. Reacting Node Behavior . . . . . . . . . . . . . . . 19 5.2.3. Reporting Node Behavior . . . . . . . . . . . . . . . 20 5.3. Protocol Extensibility . . . . . . . . . . . . . . . . . 22 6. Loss Algorithm . . . . . . . . . . . . . . . . . . . . . . . 23 6.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . 23 6.2. Reporting Node Behavior . . . . . . . . . . . . . . . . . 24 6.3. Reacting Node Behavior . . . . . . . . . . . . . . . . . 24 7. Attribute Value Pairs . . . . . . . . . . . . . . . . . . . . 25 7.1. OC-Supported-Features AVP . . . . . . . . . . . . . . . . 25 7.2. OC-Feature-Vector AVP . . . . . . . . . . . . . . . . . . 25 7.3. OC-OLR AVP . . . . . . . . . . . . . . . . . . . . . . . 26 7.4. OC-Sequence-Number AVP . . . . . . . . . . . . . . . . . 26 7.5. OC-Validity-Duration AVP . . . . . . . . . . . . . . . . 26 7.6. OC-Report-Type AVP . . . . . . . . . . . . . . . . . . . 27 7.7. OC-Reduction-Percentage AVP . . . . . . . . . . . . . . . 27 7.8. AVP Flag Rules . . . . . . . . . . . . . . . . . . . . . 28 8. Error Response Codes . . . . . . . . . . . . . . . . . . . . 28 9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 29 9.1. AVP Codes . . . . . . . . . . . . . . . . . . . . . . . . 29 9.2. New Registries . . . . . . . . . . . . . . . . . . . . . 29 10. Security Considerations . . . . . . . . . . . . . . . . . . . 30 10.1. Potential Threat Modes . . . . . . . . . . . . . . . . . 30 10.2. Denial-of-Service Attacks . . . . . . . . . . . . . . . 31 10.3. Noncompliant Nodes . . . . . . . . . . . . . . . . . . . 32 10.4. End-to-End Security Issues . . . . . . . . . . . . . . . 32 11. References . . . . . . . . . . . . . . . . . . . . . . . . . 34 11.1. Normative References . . . . . . . . . . . . . . . . . . 34 11.2. Informative References . . . . . . . . . . . . . . . . . 34
Top   ToC   RFC7683 - Page 3
   Appendix A.  Issues Left for Future Specifications  . . . . . . .  35
     A.1.  Additional Traffic Abatement Algorithms . . . . . . . . .  35
     A.2.  Agent Overload  . . . . . . . . . . . . . . . . . . . . .  35
     A.3.  New Error Diagnostic AVP  . . . . . . . . . . . . . . . .  35
   Appendix B.  Deployment Considerations  . . . . . . . . . . . . .  35
   Appendix C.  Considerations for Applications Integrating the DOIC
                Solution . . . . . . . . . . . . . . . . . . . . . .  36
     C.1.  Application Classification  . . . . . . . . . . . . . . .  36
     C.2.  Implications of Application Type Overload . . . . . . . .  37
     C.3.  Request Transaction Classification  . . . . . . . . . . .  38
     C.4.  Request Type Overload Implications  . . . . . . . . . . .  39
   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  41
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  42

1. Introduction

This specification defines a base solution for Diameter overload control, referred to as Diameter Overload Indication Conveyance (DOIC), based on the requirements identified in [RFC7068]. This specification addresses Diameter overload control between Diameter nodes that support the DOIC solution. The solution, which is designed to apply to existing and future Diameter applications, requires no changes to the Diameter base protocol [RFC6733] and is deployable in environments where some Diameter nodes do not implement the Diameter overload control solution defined in this specification. A new application specification can incorporate the overload control mechanism specified in this document by making it mandatory to implement for the application and referencing this specification normatively. It is the responsibility of the Diameter application designers to define how overload control mechanisms work on that application. Note that the overload control solution defined in this specification does not address all the requirements listed in [RFC7068]. A number of features related to overload control are left for future specifications. See Appendix A for a list of extensions that are currently being considered.

2. Terminology and Abbreviations

Abatement Reaction to receipt of an overload report resulting in a reduction in traffic sent to the reporting node. Abatement actions include diversion and throttling.
Top   ToC   RFC7683 - Page 4
   Abatement Algorithm

      An extensible method requested by reporting nodes and used by
      reacting nodes to reduce the amount of traffic sent during an
      occurrence of overload control.

   Diversion

      An overload abatement treatment where the reacting node selects
      alternate destinations or paths for requests.

   Host-Routed Requests

      Requests that a reacting node knows will be served by a particular
      host, either due to the presence of a Destination-Host Attribute
      Value Pair (AVP) or by some other local knowledge on the part of
      the reacting node.

   Overload Control State (OCS)

      Internal state maintained by a reporting or reacting node
      describing occurrences of overload control.

   Overload Report (OLR)

      Overload control information for a particular overload occurrence
      sent by a reporting node.

   Reacting Node

      A Diameter node that acts upon an overload report.

   Realm-Routed Requests

      Requests sent by a reacting node where the reacting node does not
      know to which host the request will be routed.

   Reporting Node

      A Diameter node that generates an overload report.  (This may or
      may not be the overloaded node.)
Top   ToC   RFC7683 - Page 5
   Throttling

      An abatement treatment that limits the number of requests sent by
      the reacting node.  Throttling can include a Diameter Client
      choosing to not send requests, or a Diameter Agent or Server
      rejecting requests with appropriate error responses.  In both
      cases, the result of the throttling is a permanent rejection of
      the transaction.

3. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. The interpretation from RFC 2119 [RFC2119] does not apply for the above listed words when they are not used in all caps.

4. Solution Overview

The Diameter Overload Information Conveyance (DOIC) solution allows Diameter nodes to request that other Diameter nodes perform overload abatement actions, that is, actions to reduce the load offered to the overloaded node or realm. A Diameter node that supports DOIC is known as a "DOIC node". Any Diameter node can act as a DOIC node, including Diameter Clients, Diameter Servers, and Diameter Agents. DOIC nodes are further divided into "Reporting Nodes" and "Reacting Nodes." A reporting node requests overload abatement by sending Overload Reports (OLRs). A reacting node acts upon OLRs and performs whatever actions are needed to fulfill the abatement requests included in the OLRs. A reporting node may report overload on its own behalf or on behalf of other nodes. Likewise, a reacting node may perform overload abatement on its own behalf or on behalf of other nodes. A Diameter node's role as a DOIC node is independent of its Diameter role. For example, Diameter Agents may act as DOIC nodes, even though they are not endpoints in the Diameter sense. Since Diameter enables bidirectional applications, where Diameter Servers can send requests towards Diameter Clients, a given Diameter node can simultaneously act as both a reporting node and a reacting node. Likewise, a Diameter Agent may act as a reacting node from the perspective of upstream nodes, and a reporting node from the perspective of downstream nodes.
Top   ToC   RFC7683 - Page 6
   DOIC nodes do not generate new messages to carry DOIC-related
   information.  Rather, they "piggyback" DOIC information over existing
   Diameter messages by inserting new AVPs into existing Diameter
   requests and responses.  Nodes indicate support for DOIC, and any
   needed DOIC parameters, by inserting an OC-Supported-Features AVP
   (Section 7.1) into existing requests and responses.  Reporting nodes
   send OLRs by inserting OC-OLR AVPs (Section 7.3).

   A given OLR applies to the Diameter realm and application of the
   Diameter message that carries it.  If a reporting node supports more
   than one realm and/or application, it reports independently for each
   combination of realm and application.  Similarly, the OC-Supported-
   Features AVP applies to the realm and application of the enclosing
   message.  This implies that a node may support DOIC for one
   application and/or realm, but not another, and may indicate different
   DOIC parameters for each application and realm for which it supports
   DOIC.

   Reacting nodes perform overload abatement according to an agreed-upon
   abatement algorithm.  An abatement algorithm defines the meaning of
   some of the parameters of an OLR and the procedures required for
   overload abatement.  An overload abatement algorithm separates
   Diameter requests into two sets.  The first set contains the requests
   that are to undergo overload abatement treatment of either throttling
   or diversion.  The second set contains the requests that are to be
   given normal routing treatment.  This document specifies a single
   "must-support" algorithm, namely, the "loss" algorithm (Section 6).
   Future specifications may introduce new algorithms.

   Overload conditions may vary in scope.  For example, a single
   Diameter node may be overloaded, in which case, reacting nodes may
   attempt to send requests to other destinations.  On the other hand,
   an entire Diameter realm may be overloaded, in which case, such
   attempts would do harm.  DOIC OLRs have a concept of "report type"
   (Section 7.6), where the type defines such behaviors.  Report types
   are extensible.  This document defines report types for overload of a
   specific host and for overload of an entire realm.

   DOIC works through non-supporting Diameter Agents that properly pass
   unknown AVPs unchanged.

4.1. Piggybacking

There is no new Diameter application defined to carry overload- related AVPs. The overload control AVPs defined in this specification have been designed to be piggybacked on top of existing
Top   ToC   RFC7683 - Page 7
   application messages.  This is made possible by adding the optional
   overload control AVPs OC-OLR and OC-Supported-Features into existing
   commands.

   Reacting nodes indicate support for DOIC by including the
   OC-Supported-Features AVP in all request messages originated or
   relayed by the reacting node.

   Reporting nodes indicate support for DOIC by including the
   OC-Supported-Features AVP in all answer messages that are originated
   or relayed by the reporting node and that are in response to a
   request that contained the OC-Supported-Features AVP.  Reporting
   nodes may include overload reports using the OC-OLR AVP in answer
   messages.

   Note that the overload control solution does not have fixed server
   and client roles.  The DOIC node role is determined based on the
   message type: whether the message is a request (i.e., sent by a
   "reacting node") or an answer (i.e., sent by a "reporting node").
   Therefore, in a typical client-server deployment, the Diameter Client
   may report its overload condition to the Diameter Server for any
   Diameter-Server-initiated message exchange.  An example of such is
   the Diameter Server requesting a re-authentication from a Diameter
   Client.

4.2. DOIC Capability Announcement

The DOIC solution supports the ability for Diameter nodes to determine if other nodes in the path of a request support the solution. This capability is referred to as DOIC Capability Announcement (DCA) and is separate from the Diameter Capability Exchange. The DCA mechanism uses the OC-Supported-Features AVPs to indicate the Diameter overload features supported. The first node in the path of a Diameter request that supports the DOIC solution inserts the OC-Supported-Features AVP in the request message. The individual features supported by the DOIC nodes are indicated in the OC-Feature-Vector AVP. Any semantics associated with the features will be defined in extension specifications that introduce the features. Note: As discussed elsewhere in the document, agents in the path of the request can modify the OC-Supported-Features AVP.
Top   ToC   RFC7683 - Page 8
      Note: The DOIC solution must support deployments where Diameter
      Clients and/or Diameter Servers do not support the DOIC solution.
      In this scenario, Diameter Agents that support the DOIC solution
      may handle overload abatement for the non-supporting Diameter
      nodes.  In this case, the DOIC agent will insert the OC-Supported-
      Features AVP in requests that do not already contain one, telling
      the reporting node that there is a DOIC node that will handle
      overload abatement.  For transactions where there was an
      OC-Supporting-Features AVP in the request, the agent will insert
      the OC-Supported-Features AVP in answers, telling the reacting
      node that there is a reporting node.

   The OC-Feature-Vector AVP will always contain an indication of
   support for the loss overload abatement algorithm defined in this
   specification (see Section 6).  This ensures that a reporting node
   always supports at least one of the advertised abatement algorithms
   received in a request messages.

   The reporting node inserts the OC-Supported-Features AVP in all
   answer messages to requests that contained the OC-Supported-Features
   AVP.  The contents of the reporting node's OC-Supported-Features AVP
   indicate the set of Diameter overload features supported by the
   reporting node.  This specification defines one exception -- the
   reporting node only includes an indication of support for one
   overload abatement algorithm, independent of the number of overload
   abatement algorithms actually supported by the reacting node.  The
   overload abatement algorithm indicated is the algorithm that the
   reporting node intends to use should it enter an overload condition.
   Reacting nodes can use the indicated overload abatement algorithm to
   prepare for possible overload reports and must use the indicated
   overload abatement algorithm if traffic reduction is actually
   requested.

      Note that the loss algorithm defined in this document is a
      stateless abatement algorithm.  As a result, it does not require
      any actions by reacting nodes prior to the receipt of an overload
      report.  Stateful abatement algorithms that base the abatement
      logic on a history of request messages sent might require reacting
      nodes to maintain state in advance of receiving an overload report
      to ensure that the overload reports can be properly handled.

   While it should only be done in exceptional circumstances and not
   during an active occurrence of overload, a reacting node that wishes
   to transition to a different abatement algorithm can stop advertising
   support for the algorithm indicated by the reporting node, as long as
   support for the loss algorithm is always advertised.
Top   ToC   RFC7683 - Page 9
   The DCA mechanism must also allow the scenario where the set of
   features supported by the sender of a request and by agents in the
   path of a request differ.  In this case, the agent can update the
   OC-Supported-Features AVP to reflect the mixture of the two sets of
   supported features.

      Note: The logic to determine if the content of the OC-Supported-
      Features AVP should be changed is out of scope for this document,
      as is the logic to determine the content of a modified
      OC-Supported-Features AVP.  These are left to implementation
      decisions.  Care must be taken not to introduce interoperability
      issues for downstream or upstream DOIC nodes.  As such, the agent
      must act as a fully compliant reporting node to the downstream
      reacting node and as a fully compliant reacting node to the
      upstream reporting node.

4.3. DOIC Overload Condition Reporting

As with DOIC capability announcement, overload condition reporting uses new AVPs (Section 7.3) to indicate an overload condition. The OC-OLR AVP is referred to as an overload report. The OC-OLR AVP includes the type of report, a sequence number, the length of time that the report is valid, and AVPs specific to the abatement algorithm. Two types of overload reports are defined in this document: host reports and realm reports. A report of type "HOST_REPORT" is sent to indicate the overload of a specific host, identified by the Origin-Host AVP of the message containing the OLR, for the Application-ID indicated in the transaction. When receiving an OLR of type "HOST_REPORT", a reacting node applies overload abatement treatment to the host-routed requests identified by the overload abatement algorithm (as defined in Section 2) sent for this application to the overloaded host. A report of type "REALM_REPORT" is sent to indicate the overload of a realm for the Application-ID indicated in the transaction. The overloaded realm is identified by the Destination-Realm AVP of the message containing the OLR. When receiving an OLR of type "REALM_REPORT", a reacting node applies overload abatement treatment to realm-routed requests identified by the overload abatement algorithm (as defined in Section 2) sent for this application to the overloaded realm.
Top   ToC   RFC7683 - Page 10
   This document assumes that there is a single source for realm reports
   for a given realm, or that if multiple nodes can send realm reports,
   that each such node has full knowledge of the overload state of the
   entire realm.  A reacting node cannot distinguish between receiving
   realm reports from a single node or from multiple nodes.

      Note: Known issues exist if there are multiple sources for
      overload reports that apply to the same Diameter entity.  Reacting
      nodes have no way of determining the source and, as such, will
      treat them as coming from a single source.  Variance in sequence
      numbers between the two sources can then cause incorrect overload
      abatement treatment to be applied for indeterminate periods of
      time.

   Reporting nodes are responsible for determining the need for a
   reduction of traffic.  The method for making this determination is
   implementation specific and depends on the type of overload report
   being generated.  A host report might be generated by tracking use of
   resources required by the host to handle transactions for the
   Diameter application.  A realm report generally impacts the traffic
   sent to multiple hosts and, as such, requires tracking the capacity
   of all servers able to handle realm-routed requests for the
   application and realm.

   Once a reporting node determines the need for a reduction in traffic,
   it uses the DOIC-defined AVPs to report on the condition.  These AVPs
   are included in answer messages sent or relayed by the reporting
   node.  The reporting node indicates the overload abatement algorithm
   that is to be used to handle the traffic reduction in the
   OC-Supported-Features AVP.  The OC-OLR AVP is used to communicate
   information about the requested reduction.

   Reacting nodes, upon receipt of an overload report, apply the
   overload abatement algorithm to traffic impacted by the overload
   report.  The method used to determine the requests that are to
   receive overload abatement treatment is dependent on the abatement
   algorithm.  The loss abatement algorithm is defined in this document
   (Section 6).  Other abatement algorithms can be defined in extensions
   to the DOIC solution.

   Two types of overload abatement treatment are defined, diversion and
   throttling.  Reacting nodes are responsible for determining which
   treatment is appropriate for individual requests.

   As the conditions that lead to the generation of the overload report
   change, the reporting node can send new overload reports requesting
   greater reduction if the condition gets worse or less reduction if
   the condition improves.  The reporting node sends an overload report
Top   ToC   RFC7683 - Page 11
   with a duration of zero to indicate that the overload condition has
   ended and abatement is no longer needed.

   The reacting node also determines when the overload report expires
   based on the OC-Validity-Duration AVP in the overload report and
   stops applying the abatement algorithm when the report expires.

   Note that erroneous overload reports can be used for DoS attacks.
   This includes the ability to indicate that a significant reduction in
   traffic, up to and including a request for no traffic, should be sent
   to a reporting node.  As such, care should be taken to verify the
   sender of overload reports.

4.4. DOIC Extensibility

The DOIC solution is designed to be extensible. This extensibility is based on existing Diameter-based extensibility mechanisms, along with the DOIC capability announcement mechanism. There are multiple categories of extensions that are expected. This includes the definition of new overload abatement algorithms, the definition of new report types, and the definition of new scopes of messages impacted by an overload report. A DOIC node communicates supported features by including them in the OC-Feature-Vector AVP, as a sub-AVP of OC-Supported-Features. Any non-backwards-compatible DOIC extensions define new values for the OC-Feature-Vector AVP. DOIC extensions also have the ability to add new AVPs to the OC-Supported-Features AVP, if additional information about the new feature is required. Overload reports can also be extended by adding new sub-AVPs to the OC-OLR AVP, allowing reporting nodes to communicate additional information about handling an overload condition. If necessary, new extensions can also define new AVPs that are not part of the OC-Supported-Features and OC-OLR group AVPs. It is, however, recommended that DOIC extensions use the OC-Supported- Features AVP and OC-OLR AVP to carry all DOIC-related AVPs.
Top   ToC   RFC7683 - Page 12

4.5. Simplified Example Architecture

Figure 1 illustrates the simplified architecture for Diameter overload information conveyance. Realm X Same or other Realms <--------------------------------------> <----------------------> +--------+ : (optional) : |Diameter| : : |Server A|--+ .--. : +--------+ : .--. +--------+ | _( `. : |Diameter| : _( `. +--------+ +--( )--:-| Agent |-:--( )--|Diameter| +--------+ | ( ` . ) ) : +--------+ : ( ` . ) ) | Client | |Diameter|--+ `--(___.-' : : `--(___.-' +--------+ |Server B| : : +--------+ : : End-to-end Overload Indication 1) <-----------------------------------------------> Diameter Application Y Overload Indication A Overload Indication A' 2) <----------------------> <----------------------> Diameter Application Y Diameter Application Y Figure 1: Simplified Architecture Choices for Overload Indication Delivery In Figure 1, the Diameter overload indication can be conveyed (1) end-to-end between servers and clients or (2) between servers and the Diameter Agent inside the realm and then between the Diameter Agent and the clients.

5. Solution Procedures

This section outlines the normative behavior for the DOIC solution.

5.1. Capability Announcement

This section defines DOIC Capability Announcement (DCA) behavior. Note: This specification assumes that changes in DOIC node capabilities are relatively rare events that occur as a result of administrative action. Reacting nodes ought to minimize changes that force the reporting node to change the features being used, especially during active overload conditions. But even if
Top   ToC   RFC7683 - Page 13
      reacting nodes avoid such changes, reporting nodes still have to
      be prepared for them to occur.  For example, differing
      capabilities between multiple reacting nodes may still force a
      reporting node to select different features on a per-transaction
      basis.

5.1.1. Reacting Node Behavior

A reacting node MUST include the OC-Supported-Features AVP in all requests. It MAY include the OC-Feature-Vector AVP, as a sub-AVP of OC-Supported-Features. If it does so, it MUST indicate support for the "loss" algorithm. If the reacting node is configured to support features (including other algorithms) in addition to the loss algorithm, it MUST indicate such support in an OC-Feature-Vector AVP. An OC-Supported-Features AVP in answer messages indicates there is a reporting node for the transaction. The reacting node MAY take action, for example, creating state for some stateful abatement algorithm, based on the features indicated in the OC-Feature-Vector AVP. Note: The loss abatement algorithm does not require stateful behavior when there is no active overload report. Reacting nodes need to be prepared for the reporting node to change selected algorithms. This can happen at any time, including when the reporting node has sent an active overload report. The reacting node can minimize the potential for changes by modifying the advertised abatement algorithms sent to an overloaded reporting node to the currently selected algorithm and loss (or just loss if it is the currently selected algorithm). This has the effect of limiting the potential change in abatement algorithm from the currently selected algorithm to loss, avoiding changes to more complex abatement algorithms that require state to operate properly.

5.1.2. Reporting Node Behavior

Upon receipt of a request message, a reporting node determines if there is a reacting node for the transaction based on the presence of the OC-Supported-Features AVP in the request message. If the request message contains an OC-Supported-Features AVP, then a reporting node MUST include the OC-Supported-Features AVP in the answer message for that transaction. Note: Capability announcement is done on a per-transaction basis. The reporting node cannot assume that the capabilities announced by a reacting node will be the same between transactions.
Top   ToC   RFC7683 - Page 14
   A reporting node MUST NOT include the OC-Supported-Features AVP,
   OC-OLR AVP, or any other overload control AVPs defined in extension
   documents in response messages for transactions where the request
   message does not include the OC-Supported-Features AVP.  Lack of the
   OC-Supported-Features AVP in the request message indicates that there
   is no reacting node for the transaction.

   A reporting node knows what overload control functionality is
   supported by the reacting node based on the content or absence of the
   OC-Feature-Vector AVP within the OC-Supported-Features AVP in the
   request message.

   A reporting node MUST select a single abatement algorithm in the
   OC-Feature-Vector AVP.  The abatement algorithm selected MUST
   indicate the abatement algorithm the reporting node wants the
   reacting node to use when the reporting node enters an overload
   condition.

   The abatement algorithm selected MUST be from the set of abatement
   algorithms contained in the request message's OC-Feature-Vector AVP.

   A reporting node that selects the loss algorithm may do so by
   including the OC-Feature-Vector AVP with an explicit indication of
   the loss algorithm, or it MAY omit the OC-Feature-Vector AVP.  If it
   selects a different algorithm, it MUST include the OC-Feature-Vector
   AVP with an explicit indication of the selected algorithm.

   The reporting node SHOULD indicate support for other DOIC features
   defined in extension documents that it supports and that apply to the
   transaction.  It does so using the OC-Feature-Vector AVP.

      Note: Not all DOIC features will apply to all Diameter
      applications or deployment scenarios.  The features included in
      the OC-Feature-Vector AVP are based on local policy of the
      reporting node.

5.1.3. Agent Behavior

Diameter Agents that support DOIC can ensure that all messages relayed by the agent contain the OC-Supported-Features AVP. A Diameter Agent MAY take on reacting node behavior for Diameter endpoints that do not support the DOIC solution. A Diameter Agent detects that a Diameter endpoint does not support DOIC reacting node behavior when there is no OC-Supported-Features AVP in a request message.
Top   ToC   RFC7683 - Page 15
   For a Diameter Agent to be a reacting node for a non-supporting
   Diameter endpoint, the Diameter Agent MUST include the OC-Supported-
   Features AVP in request messages it relays that do not contain the
   OC-Supported-Features AVP.

   A Diameter Agent MAY take on reporting node behavior for Diameter
   endpoints that do not support the DOIC solution.  The Diameter Agent
   MUST have visibility to all traffic destined for the non-supporting
   host in order to become the reporting node for the Diameter endpoint.
   A Diameter Agent detects that a Diameter endpoint does not support
   DOIC reporting node behavior when there is no OC-Supported-Features
   AVP in an answer message for a transaction that contained the
   OC-Supported-Features AVP in the request message.

   If a request already has the OC-Supported-Features AVP, a Diameter
   Agent MAY modify it to reflect the features appropriate for the
   transaction.  Otherwise, the agent relays the OC-Supported-Features
   AVP without change.

      Example: If the agent supports a superset of the features reported
      by the reacting node, then the agent might choose, based on local
      policy, to advertise that superset of features to the reporting
      node.

   If the Diameter Agent changes the OC-Supported-Features AVP in a
   request message, then it is likely it will also need to modify the
   OC-Supported-Features AVP in the answer message for the transaction.
   A Diameter Agent MAY modify the OC-Supported-Features AVP carried in
   answer messages.

   When making changes to the OC-Supported-Features or OC-OLR AVPs, the
   Diameter Agent needs to ensure consistency in its behavior with both
   upstream and downstream DOIC nodes.

5.2. Overload Report Processing

5.2.1. Overload Control State

Both reacting and reporting nodes maintain Overload Control State (OCS) for active overload conditions. The following sections define behavior associated with that OCS. The contents of the OCS in the reporting node and in the reacting node represent logical constructs. The actual internal physical structure of the state included in the OCS is an implementation decision.
Top   ToC   RFC7683 - Page 16
5.2.1.1. Overload Control State for Reacting Nodes
A reacting node maintains the following OCS per supported Diameter application: o a host-type OCS entry for each Destination-Host to which it sends host-type requests and o a realm-type OCS entry for each Destination-Realm to which it sends realm-type requests. A host-type OCS entry is identified by the pair of Application-ID and the node's DiameterIdentity. A realm-type OCS entry is identified by the pair of Application-ID and realm. The host-type and realm-type OCS entries include the following information (the actual information stored is an implementation decision): o Sequence number (as received in OC-OLR; see Section 7.3) o Time of expiry (derived from OC-Validity-Duration AVP received in the OC-OLR AVP and time of reception of the message carrying OC-OLR AVP) o Selected abatement algorithm (as received in the OC-Supported- Features AVP) o Input data that is abatement algorithm specific (as received in the OC-OLR AVP -- for example, OC-Reduction-Percentage for the loss abatement algorithm)
5.2.1.2. Overload Control State for Reporting Nodes
A reporting node maintains OCS entries per supported Diameter application, per supported (and eventually selected) abatement algorithm, and per report type. An OCS entry is identified by the tuple of Application-ID, report type, and abatement algorithm, and it includes the following information (the actual information stored is an implementation decision): o Sequence number o Validity duration
Top   ToC   RFC7683 - Page 17
   o  Expiration time

   o  Input data that is algorithm specific (for example, the reduction
      percentage for the loss abatement algorithm)

5.2.1.3. Reacting Node's Maintenance of Overload Control State
When a reacting node receives an OC-OLR AVP, it MUST determine if it is for an existing or new overload condition. Note: For the remainder of this section, the term "OLR" refers to the combination of the contents of the received OC-OLR AVP and the abatement algorithm indicated in the received OC-Supported- Features AVP. When receiving an answer message with multiple OLRs of different supported report types, a reacting node MUST process each received OLR. The OLR is for an existing overload condition if a reacting node has an OCS that matches the received OLR. For a host report, this means it matches the Application-ID and the host's DiameterIdentity in an existing host OCS entry. For a realm report, this means it matches the Application-ID and the realm in an existing realm OCS entry. If the OLR is for an existing overload condition, then a reacting node MUST determine if the OLR is a retransmission or an update to the existing OLR. If the sequence number for the received OLR is greater than the sequence number stored in the matching OCS entry, then a reacting node MUST update the matching OCS entry. If the sequence number for the received OLR is less than or equal to the sequence number in the matching OCS entry, then a reacting node MUST silently ignore the received OLR. The matching OCS MUST NOT be updated in this case. If the reacting node determines that the sequence number has rolled over, then the reacting node MUST update the matching OCS entry. This can be determined by recognizing that the number has changed from a value within 1% of the maximum value in the OC-Sequence-Number AVP to a value within 1% of the minimum value in the OC-Sequence- Number AVP.
Top   ToC   RFC7683 - Page 18
   If the received OLR is for a new overload condition, then a reacting
   node MUST generate a new OCS entry for the overload condition.

   For a host report, this means a reacting node creates an OCS entry
   with the Application-ID in the received message and DiameterIdentity
   of the Origin-Host in the received message.

      Note: This solution assumes that the Origin-Host AVP in the answer
      message included by the reporting node is not changed along the
      path to the reacting node.

   For a realm report, this means a reacting node creates an OCS entry
   with the Application-ID in the received message and realm of the
   Origin-Realm in the received message.

   If the received OLR contains a validity duration of zero ("0"), then
   a reacting node MUST update the OCS entry as being expired.

      Note: It is not necessarily appropriate to delete the OCS entry,
      as the recommended behavior is that the reacting node slowly
      returns to full traffic when ending an overload abatement period.

   The reacting node does not delete an OCS when receiving an answer
   message that does not contain an OC-OLR AVP (i.e., absence of OLR
   means "no change").

5.2.1.4. Reporting Node's Maintenance of Overload Control State
A reporting node SHOULD create a new OCS entry when entering an overload condition. Note: If a reporting node knows through absence of the OC-Supported-Features AVP in received messages that there are no reacting nodes supporting DOIC, then the reporting node can choose to not create OCS entries. When generating a new OCS entry, the sequence number SHOULD be set to zero ("0"). When generating sequence numbers for new overload conditions, the new sequence number MUST be greater than any sequence number in an active (unexpired) overload report for the same application and report type previously sent by the reporting node. This property MUST hold over a reboot of the reporting node.
Top   ToC   RFC7683 - Page 19
      Note: One way of addressing this over a reboot of a reporting node
      is to use a timestamp for the first overload condition that occurs
      after the report and to start using sequences beginning with zero
      for subsequent overload conditions.

   A reporting node MUST update an OCS entry when it needs to adjust the
   validity duration of the overload condition at reacting nodes.

      Example: If a reporting node wishes to instruct reacting nodes to
      continue overload abatement for a longer period of time than
      originally communicated.  This also applies if the reporting node
      wishes to shorten the period of time that overload abatement is to
      continue.

   A reporting node MUST update an OCS entry when it wishes to adjust
   any parameters specific to the abatement algorithm, including, for
   example, the reduction percentage used for the loss abatement
   algorithm.

      Example: If a reporting node wishes to change the reduction
      percentage either higher (if the overload condition has worsened)
      or lower (if the overload condition has improved), then the
      reporting node would update the appropriate OCS entry.

   A reporting node MUST increment the sequence number associated with
   the OCS entry anytime the contents of the OCS entry are changed.
   This will result in a new sequence number being sent to reacting
   nodes, instructing them to process the OC-OLR AVP.

   A reporting node SHOULD update an OCS entry with a validity duration
   of zero ("0") when the overload condition ends.

      Note: If a reporting node knows that the OCS entries in the
      reacting nodes are near expiration, then the reporting node might
      decide not to send an OLR with a validity duration of zero.

   A reporting node MUST keep an OCS entry with a validity duration of
   zero ("0") for a period of time long enough to ensure that any
   unexpired reacting node's OCS entry created as a result of the
   overload condition in the reporting node is deleted.

5.2.2. Reacting Node Behavior

When a reacting node sends a request, it MUST determine if that request matches an active OCS.
Top   ToC   RFC7683 - Page 20
   If the request matches an active OCS, then the reacting node MUST use
   the overload abatement algorithm indicated in the OCS to determine if
   the request is to receive overload abatement treatment.

   For the loss abatement algorithm defined in this specification, see
   Section 6 for the overload abatement algorithm logic applied.

   If the overload abatement algorithm selects the request for overload
   abatement treatment, then the reacting node MUST apply overload
   abatement treatment on the request.  The abatement treatment applied
   depends on the context of the request.

   If diversion abatement treatment is possible (i.e., a different path
   for the request can be selected where the overloaded node is not part
   of the different path), then the reacting node SHOULD apply diversion
   abatement treatment to the request.  The reacting node MUST apply
   throttling abatement treatment to requests identified for abatement
   treatment when diversion treatment is not possible or was not
   applied.

      Note: This only addresses the case where there are two defined
      abatement treatments, diversion and throttling.  Any extension
      that defines a new abatement treatment must also define its
      interaction with existing treatments.

   If the overload abatement treatment results in throttling of the
   request and if the reacting node is an agent, then the agent MUST
   send an appropriate error as defined in Section 8.

   Diameter endpoints that throttle requests need to do so according to
   the rules of the client application.  Those rules will vary by
   application and are beyond the scope of this document.

   In the case that the OCS entry indicated no traffic was to be sent to
   the overloaded entity and the validity duration expires, then
   overload abatement associated with the overload report MUST be ended
   in a controlled fashion.

5.2.3. Reporting Node Behavior

If there is an active OCS entry, then a reporting node SHOULD include the OC-OLR AVP in all answers to requests that contain the OC-Supported-Features AVP and that match the active OCS entry. Note: A request matches 1) if the Application-ID in the request matches the Application-ID in any active OCS entry and 2) if the report type in the OCS entry matches a report type supported by the reporting node as indicated in the OC-Supported-Features AVP.
Top   ToC   RFC7683 - Page 21
   The contents of the OC-OLR AVP depend on the selected algorithm.

   A reporting node MAY choose to not resend an overload report to a
   reacting node if it can guarantee that this overload report is
   already active in the reacting node.

      Note: In some cases (e.g., when there are one or more agents in
      the path between reporting and reacting nodes, or when overload
      reports are discarded by reacting nodes), a reporting node may not
      be able to guarantee that the reacting node has received the
      report.

   A reporting node MUST NOT send overload reports of a type that has
   not been advertised as supported by the reacting node.

      Note: A reacting node implicitly advertises support for the host
      and realm report types by including the OC-Supported-Features AVP
      in the request.  Support for other report types will be explicitly
      indicated by new feature bits in the OC-Feature-Vector AVP.

   A reporting node SHOULD explicitly indicate the end of an overload
   occurrence by sending a new OLR with OC-Validity-Duration set to a
   value of zero ("0").  The reporting node SHOULD ensure that all
   reacting nodes receive the updated overload report.

   A reporting node MAY rely on the OC-Validity-Duration AVP values for
   the implicit cleanup of overload control state on the reacting node.

      Note: All OLRs sent have an expiration time calculated by adding
      the validity duration contained in the OLR to the time the message
      was sent.  Transit time for the OLR can be safely ignored.  The
      reporting node can ensure that all reacting nodes have received
      the OLR by continuing to send it in answer messages until the
      expiration time for all OLRs sent for that overload condition have
      expired.

   When a reporting node sends an OLR, it effectively delegates any
   necessary throttling to downstream nodes.  If the reporting node also
   locally throttles the same set of messages, the overall number of
   throttled requests may be higher than intended.  Therefore, before
   applying local message throttling, a reporting node needs to check if
   these messages match existing OCS entries, indicating that these
   messages have survived throttling applied by downstream nodes that
   have received the related OLR.

   However, even if the set of messages match existing OCS entries, the
   reporting node can still apply other abatement methods such as
   diversion.  The reporting node might also need to throttle requests
Top   ToC   RFC7683 - Page 22
   for reasons other than overload.  For example, an agent or server
   might have a configured rate limit for each client and might throttle
   requests that exceed that limit, even if such requests had already
   been candidates for throttling by downstream nodes.  The reporting
   node also has the option to send new OLRs requesting greater
   reductions in traffic, reducing the need for local throttling.

   A reporting node SHOULD decrease requested overload abatement
   treatment in a controlled fashion to avoid oscillations in traffic.

      Example: A reporting node might wait some period of time after
      overload ends before terminating the OLR, or it might send a
      series of OLRs indicating progressively less overload severity.

5.3. Protocol Extensibility

The DOIC solution can be extended. Types of potential extensions include new traffic abatement algorithms, new report types, or other new functionality. When defining a new extension that requires new normative behavior, the specification must define a new feature for the OC-Feature-Vector AVP. This feature bit is used to communicate support for the new feature. The extension may define new AVPs for use in the DOIC Capability Announcement and for use in DOIC overload reporting. These new AVPs SHOULD be defined to be extensions to the OC-Supported-Features or OC-OLR AVPs defined in this document. The Grouped AVP extension mechanisms defined in [RFC6733] apply. This allows, for example, defining a new feature that is mandatory to be understood even when piggybacked on an existing application. When defining new report type values, the corresponding specification must define the semantics of the new report types and how they affect the OC-OLR AVP handling. The OC-Supported-Feature and OC-OLR AVPs can be expanded with optional sub-AVPs only if a legacy DOIC implementation can safely ignore them without breaking backward compatibility for the given OC-Report-Type AVP value. Any new sub-AVPs must not require that the M-bit be set. Documents that introduce new report types must describe any limitations on their use across non-supporting agents.
Top   ToC   RFC7683 - Page 23
   As with any Diameter specification, RFC 6733 requires all new AVPs to
   be registered with IANA.  See Section 9 for the required procedures.
   New features (feature bits in the OC-Feature-Vector AVP) and report
   types (in the OC-Report-Type AVP) MUST be registered with IANA.



(page 23 continued on part 2)

Next Section