Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 7273

RTP Clock Source Signalling

Pages: 30
Proposed Standard
Errata

Top   ToC   RFC7273 - Page 1
Internet Engineering Task Force (IETF)                       A. Williams
Request for Comments: 7273                                      Audinate
Category: Standards Track                                       K. Gross
ISSN: 2070-1721                                             AVA Networks
                                                      R. van Brandenburg
                                                             H. Stokking
                                                                     TNO
                                                               June 2014


                      RTP Clock Source Signalling

Abstract

NTP format timestamps are used by several RTP protocols for synchronisation and statistical measurements. This memo specifies Session Description Protocol (SDP) signalling that identifies timestamp reference clock sources and SDP signalling that identifies the media clock sources in a multimedia session. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7273. Copyright Notice Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Top   ToC   RFC7273 - Page 2

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Requirements Language . . . . . . . . . . . . . . . . . . 3 2. Applications . . . . . . . . . . . . . . . . . . . . . . . . 3 3. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 4 4. Timestamp Reference Clock Source Signalling . . . . . . . . . 5 4.1. Clock Synchronisation . . . . . . . . . . . . . . . . . . 5 4.2. Identifying NTP Reference Clocks . . . . . . . . . . . . 6 4.3. Identifying PTP Reference Clocks . . . . . . . . . . . . 6 4.4. Identifying Global Reference Clocks . . . . . . . . . . . 8 4.5. Private Reference Clocks . . . . . . . . . . . . . . . . 8 4.6. Local Reference Clocks . . . . . . . . . . . . . . . . . 8 4.7. Traceable Reference Clocks . . . . . . . . . . . . . . . 8 4.8. SDP Signalling of Timestamp Reference Clock Source . . . 9 4.8.1. Examples . . . . . . . . . . . . . . . . . . . . . . 11 5. Media Clock Source Signalling . . . . . . . . . . . . . . . . 12 5.1. Asynchronously Generated Media Clock . . . . . . . . . . 12 5.2. Direct-Referenced Media Clock . . . . . . . . . . . . . . 12 5.3. Stream-Referenced Media Clock . . . . . . . . . . . . . . 14 5.4. SDP Signalling of Media Clock Source . . . . . . . . . . 15 5.5. Examples . . . . . . . . . . . . . . . . . . . . . . . . 17 6. Signalling Considerations . . . . . . . . . . . . . . . . . . 19 6.1. Usage in Offer/Answer . . . . . . . . . . . . . . . . . . 19 6.1.1. Indicating Support for Clock Source Signalling . . . 20 6.1.2. Timestamp Reference Clock . . . . . . . . . . . . . . 20 6.1.3. Media Clock . . . . . . . . . . . . . . . . . . . . . 20 6.2. Usage Outside of Offer/Answer . . . . . . . . . . . . . . 21 7. Security Considerations . . . . . . . . . . . . . . . . . . . 21 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 22 8.1. Reference Clock SDP Parameter . . . . . . . . . . . . . . 22 8.2. Media Clock SDP Parameter . . . . . . . . . . . . . . . . 23 8.3. Timestamp Reference Clock Source Parameters Registry . . 23 8.4. Media Clock Source Parameters Registry . . . . . . . . . 24 8.5. Source-Level Attributes . . . . . . . . . . . . . . . . . 25 8.5.1. Source-Level Timestamp Reference Clock Attribute . . 25 8.5.2. Source-Level Media Clock Attribute . . . . . . . . . 25 9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 25 10. References . . . . . . . . . . . . . . . . . . . . . . . . . 25 10.1. Normative References . . . . . . . . . . . . . . . . . . 25 10.2. Informative References . . . . . . . . . . . . . . . . . 27
Top   ToC   RFC7273 - Page 3

1. Introduction

RTP protocols use NTP format timestamps to facilitate multimedia session synchronisation and to provide estimates of round-trip time (RTT) and other statistical parameters. Information about media clock timing exchanged in NTP format timestamps may come from a clock that is synchronised to a global time reference, but this cannot be assumed, nor is there a standardised mechanism available to indicate that timestamps are derived from a common reference clock. Therefore, RTP implementations typically assume that NTP timestamps are taken using unsynchronised clocks and must compensate for absolute time differences and rate differences. Without a shared reference clock, RTP can time align flows from the same source at a given receiver using relative timing; however, tight synchronisation between two or more different receivers (possibly with different network paths) or between two or more senders is not possible. High performance AV systems often use a reference media clock distributed to all devices in the system. The reference media clock may be distinct from the reference clock used to provide timestamps. A reference media clock may be provided along with an audio or video signal interface, or via a dedicated clock signal (e.g., genlock [SMPTE-318M-1999] or audio word clock [AES11-2009]). If sending and receiving media clocks are known to be synchronised to a common reference clock, performance can be improved by minimising buffering and avoiding rate conversion. This specification defines SDP signalling of timestamp reference clock sources and media reference clock sources.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Applications

Timestamp reference clock source and media clock signalling benefit applications requiring synchronised media capture or playout and low latency operation.
Top   ToC   RFC7273 - Page 4
   Examples include, but are not limited to:

   Social TV:  "Inter-Destination Media Synchronization (IDMS) Using the
      RTP Control Protocol (RTCP)" [RFC7272] defines social TV as the
      combination of media content consumption by two or more users at
      different devices and locations and real-time communication
      between those users.  An example of social TV is where two or more
      users are watching the same television broadcast at different
      devices and/or locations while communicating with each other using
      text, audio, and/or video.  A skew in the media playout of the two
      or more users can have adverse effects on their experience.  A
      well-known use case here is one friend experiencing a goal in a
      football match well before or after other friends.

   Video Walls:  A video wall consists of multiple computer monitors,
      video projectors, or television sets tiled together contiguously
      or overlapped in order to form one large screen.  Each of the
      screens reproduces a portion of the larger picture.  In some
      implementations, each screen or projector may be individually
      connected to the network and receive its portion of the overall
      image from a network-connected video server or video scaler.
      Screens are refreshed at 50 or 60 hertz or potentially faster.  If
      the refresh is not synchronised, the effect of multiple screens
      acting as one is broken.

   Networked Audio:  Networked loudspeakers, amplifiers, and analogue
      input/output (I/O) devices transmitting or receiving audio signals
      via RTP can be connected to various parts of a building or campus
      network.  Such situations can, for example, be found in large
      conference rooms, legislative chambers, classrooms (especially
      those supporting distance learning), and other large-scale
      environments such as stadiums.  Since humans are more sensitive to
      differences in audio delay, this use case needs even more accuracy
      than the video wall use case.  Depending on the exact application,
      the need for accuracy can then be in the range of microseconds
      [Olsen].

   Sensor Arrays:  Sensor arrays contain many synchronised measurement
      elements producing signals that are then combined to form an
      overall measurement.  Accurate capture of the phase relationships
      between the various signals arriving at each element of the array
      is critically important for proper operation.  Examples include
      towed or fixed sonar arrays, seismic arrays, and phased arrays
      used in radar applications, for instance.
Top   ToC   RFC7273 - Page 5

3. Definitions

The following definitions are used in this document: media level: Media-level information applies to a single SDP media stream. In an SDP description, media-level information appears after each "m"-line. multimedia session: A set of multimedia senders and receivers as well as the data streams flowing from senders to receivers. SDP [RFC4566] describes multimedia sessions. RTP media stream: A single stream of RTP packets identified by an RTP Synchronisation Source (SSRC). RTP sender: The device generating an associated RTP media stream. session level: Session-level information applies to an entire multimedia session. In an SDP description, session-level information appears before the first "m"-line. source level: Source-level information applies to a specific RTP media stream. "Source-Specific Media Attributes in the Session Description Protocol (SDP)" [RFC5576] defines how source-level information is included into an SDP session description. traceable time: A clock is considered to provide traceable time if it can be proven to be synchronised to International Atomic Time (TAI). Coordinated Universal Time (UTC) is a time standard synchronised to TAI. UTC is, therefore, also considered traceable time once leap seconds have been taken into account. GPS [IS-GPS-200F] is commonly used to provide a TAI traceable time reference. Some network time synchronisation protocols (e.g., Precision Time Protocol (PTP) [IEEE1588-2008] and NTP) can explicitly indicate that the master clock is providing a traceable time reference over the network.

4. Timestamp Reference Clock Source Signalling

The NTP format timestamps used by RTP are taken by reading a local real-time clock at the sender or receiver. This local clock may be synchronised to another clock (time source) by some means, or it may be unsynchronised. A variety of methods are available to synchronise local clocks to a reference time source, including network time protocols (e.g., NTP [RFC5905] and PTP [IEEE1588-2008]) and radio clocks (e.g., GPS [IS-GPS-200F]).
Top   ToC   RFC7273 - Page 6
   The following sections describe and define SDP signalling, indicating
   whether and how the local timestamping clock in an RTP sender or
   receiver is synchronised to a reference clock.

4.1. Clock Synchronisation

Two or more local clocks that are sufficiently synchronised will produce timestamps for a given RTP event that can be used as if they came from the same clock. Timestamps produced in one RTP sender or receiver can be directly compared to a local clock in another RTP sender or receiver. The accuracy of synchronisation required is application dependent. See "Applications" (Section 2) for a discussion of applications and their corresponding requirements. To serve as a reference clock, clocks must minimally be "syntonised" (exactly frequency matched) to one another. Sufficient synchronisation can typically be achieved by using a network time protocol (e.g., NTP, 802.1AS, and IEEE 1588-2008) to synchronise all devices to a single master clock. Another approach is to use clocks providing a global time reference (e.g., GPS, Galileo, and GLONASS). This concept may be used in conjunction with network time protocols as some protocols (e.g., PTP and NTP) allow master clocks to indicate explicitly that they are providing traceable time.

4.2. Identifying NTP Reference Clocks

A single NTP server is identified by a hostname (or IP address) and an optional port number. If the port number is not indicated, it is assumed to be the standard NTP port (123). Two or more NTP servers MAY be listed at the same level in the session description to indicate that all of the listed servers deliver the same reference time and may be used interchangeably. RTP senders and receivers are assured proper synchronisation regardless of which server they choose and, in support of fault tolerance, may switch servers while streaming.

4.3. Identifying PTP Reference Clocks

The Precision Time Protocol (PTP) as standardised in IEEE 1588 provides a shared reference clock in a network. IEEE 1588 provides sub-microsecond synchronisation between devices on a LAN and typically locks within seconds at startup. With support from Ethernet switches, IEEE 1588 protocols can achieve nanosecond timing
Top   ToC   RFC7273 - Page 7
   accuracy in LANs.  Network interface chips and cards supporting
   hardware timestamping of timing-critical protocol messages are also
   available.

   Three flavours of IEEE 1588 are in use today:

   o  IEEE 1588-2002 [IEEE1588-2002]: the original "Standard for a
      Precision Clock Synchronization Protocol for Networked Measurement
      and Control Systems".  This is also known as IEEE1588v1 or PTPv1.

   o  IEEE 1588-2008 [IEEE1588-2008]: the second version of the
      "Standard for a Precision Clock Synchronization Protocol for
      Networked Measurement and Control Systems".  This is a revised
      version of the original IEEE1588-2002 standard and is also known
      as IEEE1588v2 or PTPv2.  IEEE 1588-2008 is not protocol compatible
      with IEEE 1588-2002.

   o  IEEE 802.1AS [IEEE802.1AS-2011]: "Timing and Synchronization for
      Time Sensitive Applications in Bridged Local Area Networks".  This
      is a profile of IEEE 1588-2008 that is Layer 2 only and is for use
      in Audio/Video Bridged LANs as described in IEEE 802.1BA-2011
      [IEEE802.1BA-2011].

   Each IEEE 1588 clock is identified by a 64-bit Extended Unique
   Identifier (EUI-64) called a "ClockIdentity".  A slave clock using
   one of the IEEE 1588 family of network time protocols acquires the
   ClockIdentity of the grandmaster clock that is the ultimate source of
   timing information for the network.  A boundary clock, which is
   itself slaved to another boundary clock, or the grandmaster passes
   the grandmaster ClockIdentity through to its slaves.

   Several instances of the IEEE 1588 protocol may operate independently
   on a single network, forming distinct PTP domains, each of which may
   have a different grandmaster clock.  As the IEEE 1588 standards have
   evolved, the definition of PTP domains has changed.  IEEE 1588-2002
   identifies protocol subdomains by a textual name, but IEEE 1588-2008
   identifies protocol domains using a numeric domain number. 802.1AS is
   a Layer 2 profile of IEEE 1588-2008 supporting a single numeric clock
   domain (0).

   When PTP domains are signalled via SDP, senders and receivers SHOULD
   check that both grandmaster ClockIdentity and the PTP domain match
   when determining clock equivalence.

   Two or more IEEE 1588 clocks MAY be listed at the same level in the
   session description to indicate that all of the listed clocks are
   candidate grandmaster clocks for the domain or deliver the same
   reference time and may be used interchangeably.  RTP senders and
Top   ToC   RFC7273 - Page 8
   receivers are assured proper synchronisation regardless of which
   synchronisation source they choose and, in support of fault
   tolerance, may switch the reference clock source while streaming.

   The PTP protocols employ a distributed election protocol called the
   "Best Master Clock Algorithm" (BMCA) to determine the active clock
   master.  The clock master choices available to BMCA can be restricted
   or biased by configuration parameters to influence the election
   process.  In some systems, it may be desirable to limit the number of
   possible PTP clock masters to avoid the need to re-signal timestamp
   reference clock sources when the clock master changes.

4.4. Identifying Global Reference Clocks

Global reference clocks provide a source of traceable time, typically via a hardware radio receiver interface. Examples include GPS, Galileo, and GLONASS. Apart from the name of the reference clock system, no further identification is required.

4.5. Private Reference Clocks

In other systems, all RTP senders and receivers may use a timestamp reference clock that is not provided by one of the methods listed above. Examples may include the reference time information provided by digital television or cellular services. These sources are identified as "private" reference clocks. All RTP senders and receivers in a session using a private reference clock are assumed to have a mechanism outside this specification for determining whether their timestamp reference clocks are equivalent.

4.6. Local Reference Clocks

[RFC3550] allows senders and receivers to either use a local wallclock reference for their NTP timestamps or, by setting the timestamp field to 0, supply no timestamps at all. Both are common practice in embedded RTP implementations. These clocks are identified as "local" and can, at best, be assumed to be equivalent to clocks originating from the same device.

4.7. Traceable Reference Clocks

A timestamp reference clock source may be labelled "traceable" if it is known to be delivering traceable time, provided adjustments are made for differing epochs, timezones, and leap seconds. Timestamps taken using clocks synchronised to a traceable time source can be directly compared even if the clocks are synchronised to different sources or via different mechanisms.
Top   ToC   RFC7273 - Page 9
   Marking a clock as traceable allows additional information (e.g., IP
   addresses, PTP master identifiers, and the like) to be omitted from
   the SDP since any traceable clock available at the answerer is
   considered to be an appropriate timestamp reference clock.  For
   example, an offerer could specify ts-refclk:ntp=/traceable/ and the
   answerer could use GPS as a reference clock since GPS is a source of
   traceable time.

4.8. SDP Signalling of Timestamp Reference Clock Source

Specification of the timestamp reference clock source may be at any or all levels (session, media, or source) of an SDP description (see level definitions in Section 3 earlier in this document for more information). Timestamp reference clock source signalling included at the session level provides default parameters for all RTP sessions and sources in the session description. More specific signalling included at the media level overrides session-level signalling. More specific signalling included at the source level overrides media-level signalling. If timestamp reference clock source signalling is included anywhere in an SDP description, it must be properly defined for all levels in the description. This may simply be achieved by providing default signalling at the session level. Timestamp reference clock parameters may be repeated at a given level (i.e., for a session or source) to provide information about additional servers or clock sources. If the attribute is repeated at a given level, all clocks described at that level are assumed to be equivalent. Traceable time sources MUST NOT be mixed with non- traceable time sources at any given level. Note that clock source parameters may change from time to time, for example, as a result of a PTP grandmaster election. SIP [RFC3261] supports the re-signalling of updated SDP information; however, other protocols may require additional notification mechanisms. General forms of usage: session level: a=ts-refclk:<clksrc> media level: a=ts-refclk:<clksrc> source level: a=ssrc:<ssrc-id> ts-refclk:<clksrc>
Top   ToC   RFC7273 - Page 10
   ABNF [RFC5234] grammar for the timestamp reference clock attribute:

   ; external references:
   POS-DIGIT   = <See RFC 4566>
   token       = <See RFC 4566>
   byte-string = <See RFC 4566>
   DIGIT       = <See RFC 5234>
   HEXDIG      = <See RFC 5234>
   CRLF        = <See RFC 5234>
   hostport    = <See RFC 3261, with revisions from RFC 5954>

   timestamp-refclk = "ts-refclk:" clksrc CRLF

   clksrc = ntp / ptp / gps / gal / glonass / local / private /
            clksrc-ext

   clksrc-ext         = clksrc-param-name clksrc-param-value
   clksrc-param-name  = token
   clksrc-param-value = ["=" byte-string ]

   ntp             = "ntp=" ntp-server-addr
   ntp-server-addr = hostport / "/traceable/"

   ptp             = "ptp=" ptp-version ":" ptp-server
   ptp-version     = "IEEE1588-2002"
                   / "IEEE1588-2008"
                   / "IEEE802.1AS-2011"
                   / ptp-version-ext
   ptp-version-ext = token

   ptp-server      = ptp-gmid [":" ptp-domain]
                   / "traceable"
   ptp-gmid        = EUI64
   ptp-domain      = ptp-domain-name / ptp-domain-nmbr

   ; PTP domain allowed characters: 0x21-0x7E (IEEE 1588-2002)
   ptp-domain-name = "domain-name=" 1*16ptp-domain-char
   ptp-domain-char = %x21-7E

   ; PTP domain allowed number range: 0-127 (IEEE 1588-2008)
   ptp-domain-nmbr = "domain-nmbr=" ptp-domain-dgts
   ptp-domain-dgts = ptp-domain-n1 / ptp-domain-n2 / ptp-domain-n3
   ptp-domain-n1   = DIGIT             ; 0-9
   ptp-domain-n2   = POS-DIGIT DIGIT   ; 10-99
   ptp-domain-n3   = ("10"/"11") DIGIT ; 100-119
                   / "12" %x30-37      ; 120-127

   gps      =  "gps"
Top   ToC   RFC7273 - Page 11
   gal      =  "gal"
   glonass  =  "glonass"
   local    =  "local"
   private  =  "private" [ ":traceable" ]

   EUI64 = 7(2HEXDIG "-") 2HEXDIG

           Figure 1: Timestamp Reference Clock Source Signalling

4.8.1. Examples

Figure 2 shows an example SDP description with a timestamp reference clock source defined at the session level. v=0 o=jdoe 2890844526 2890842807 IN IP4 192.0.2.1 s=SDP Seminar i=A Seminar on the session description protocol u=http://www.example.com/seminars/sdp.pdf e=j.doe@example.com (Jane Doe) c=IN IP4 233.252.0.1/64 t=2873397496 2873404696 a=recvonly a=ts-refclk:ntp=/traceable/ m=audio 49170 RTP/AVP 0 m=video 51372 RTP/AVP 99 a=rtpmap:99 h263-1998/90000 Figure 2: Timestamp Reference Clock Definition at the Session Level
Top   ToC   RFC7273 - Page 12
   Figure 3 shows an example SDP description with timestamp reference
   clock definitions at the media level overriding the session-level
   defaults.

   v=0
   o=jdoe 2890844526 2890842807 IN IP4 192.0.2.1
   s=SDP Seminar
   i=A Seminar on the session description protocol
   u=http://www.example.com/seminars/sdp.pdf
   e=j.doe@example.com (Jane Doe)
   c=IN IP4 233.252.0.1/64
   t=2873397496 2873404696
   a=recvonly
   a=ts-refclk:local
   m=audio 49170 RTP/AVP 0
   a=ts-refclk:ntp=203.0.113.10
   a=ts-refclk:ntp=198.51.100.22
   m=video 51372 RTP/AVP 99
   a=rtpmap:99 h263-1998/90000
   a=ts-refclk:ptp=IEEE802.1AS-2011:39-A7-94-FF-FE-07-CB-D0

     Figure 3: Timestamp Reference Clock Definition at the Media Level

   Figure 4 shows an example SDP description with a timestamp reference
   clock definition at the source level overriding the session-level
   default.

   v=0
   o=jdoe 2890844526 2890842807 IN IP4 192.0.2.1
   s=SDP Seminar
   i=A Seminar on the session description protocol
   u=http://www.example.com/seminars/sdp.pdf
   e=j.doe@example.com (Jane Doe)
   c=IN IP4 233.252.0.1/64
   t=2873397496 2873404696
   a=recvonly
   a=ts-refclk:local
   m=audio 49170 RTP/AVP 0
   m=video 51372 RTP/AVP 99
   a=rtpmap:99 h263-1998/90000
   a=ssrc:12345 ts-refclk:ptp=IEEE802.1AS-2011:39-A7-94-FF-FE-07-CB-D0

    Figure 4: Timestamp Reference Clock Signalling at the Source Level
Top   ToC   RFC7273 - Page 13

5. Media Clock Source Signalling

The media clock source for a stream determines the timebase used to advance the RTP timestamps included in RTP packets. The media clock may be asynchronously generated by the sender, it may be generated in fixed relationship to the reference clock, or it may be generated with respect to another stream on the network (which is presumably being received by the sender).

5.1. Asynchronously Generated Media Clock

In the simplest sender implementation, the sender generates media by sampling audio or video according to a free-running local clock. The RTP timestamps in media packets are advanced according to this media clock, and packet transmission is typically timed to regular intervals on this timeline. The sender may or may not include an NTP timestamp in sender reports to allow mapping of this asynchronous media clock to a reference clock. The asynchronously generated media clock is the assumed mode of operation when there is no signalling of the media clock source. Alternatively, an asynchronous media clock may be explicitly signalled. a=mediaclk:sender

5.2. Direct-Referenced Media Clock

A media clock may be directly derived from a reference clock. For this case, it is required that a reference clock be specified with an a=ts-refclk attribute (Section 4.8). The signalling optionally indicates a media clock offset value. The offset indicates the RTP timestamp value at the epoch (time of origin) of the reference clock. To use the offset, implementations need to compute RTP timestamps from reference clocks. To simplify these calculations, streams utilizing offset signalling SHOULD use a TAI timestamp reference clock to avoid complications introduced by leap seconds. See [RFC7164] for further discussion of leap-second issues in timestamp reference clocks. To compute the RTP timestamp against an IEEE 1588 (TAI-based) reference, the time elapsed between the 00:00:00 1 January 1970 IEEE 1588 epoch and the current time must be computed. Between the epoch and 1 January 2013, there were 15,706 days (including extra days during leap years). Since there are no leap seconds in a TAI reference, there are exactly 86,400 seconds during each of these days or a total of 1,356,998,400 seconds from the epoch to 00:00:00 1
Top   ToC   RFC7273 - Page 14
   January 2013.  A 90 kHz RTP clock for a video stream would have
   advanced 122,129,856,000,000 units over this period.  With a
   signalled offset of 0, the RTP clock value modulo the 32-bit unsigned
   RTP timestamp representation in the RTP header would have been
   2,460,938,240 at 00:00:00 1 January 2013.  If an offset of 23,465 had
   been signalled, the clock value would have been 2,460,961,705.

   In order to use an NTP reference, the actual time elapsed between the
   00:00:00 1 January 1900 NTP epoch to the current time must be
   computed. 2,208,988,800 seconds elapsed between the NTP epoch and
   00:00:00 1 January 1970 [RFC0868].  Between the beginning of 1970 and
   2013, there were 15,706 days elapsed (including extra days during
   leap years) and 25 leap seconds inserted.  There is, therefore, a
   total of 3,565,987,225 seconds from the NTP epoch to 00:00:00 1
   January 2013.  A 90 kHz RTP clock for a video stream would have
   advanced 320,938,850,250,000 units over this period.  With a
   signalled offset of 0, the RTP clock value modulo the 32-bit unsigned
   representation would have been 1,714,023,696 at 00:00:00 1 January
   2013.

   If no offset is signalled, the offset can be inferred at the receiver
   by examining RTCP sender reports that contain NTP and RTP timestamps,
   which combined define a mapping.  The NTP/RTP timestamp mapping
   provided by RTCP sender reports (SRs) takes precedence over that
   signalled through SDP; however, the media clock rate implied by the
   SRs MUST be consistent with the rate signalled.

   A rate modifier may be specified.  The modifier is expressed as the
   ratio of two integers and modifies the rate specified or implied by
   the media description by this ratio.  If omitted, the rate is assumed
   to be the exact rate specified or implied by the media format.  For
   example, without a rate specification, the RTP clock for an 8 kHz
   G.711 audio stream will advance exactly 8000 units for each second
   advance in the reference clock from which it is derived.

   The rate modifier is primarily useful for accommodating certain
   "oddball" audio sample rates associated with NTSC video (see
   Figure 7).  Modified rates are not advised for video streams that
   generally use a 90 kHz RTP clock regardless of frame rate or sample
   rate used for embedded audio.

      a=mediaclk:direct[=<offset>] [rate=<rate numerator>/<rate
      denominator>]
Top   ToC   RFC7273 - Page 15

5.3. Stream-Referenced Media Clock

A common synchronisation architecture for audio/visual systems involves distributing a reference media clock from a master device to a number of slave devices, typically by means of a cable. Examples include audio word clock distribution and video black burst distribution. In this case, the media clock is locally generated, often by a crystal oscillator, and is not locked to a timestamp reference clock. To support this architecture across a network, a master clock identifier is associated with an RTP media stream carrying media clock timing information from a master device. The master clock identifier represents a media clock source in the master device. Slave devices in turn associate the master media clock identifier with streams they transmit, signalling the synchronisation relationship between the master and the transmitter's media clock. Slave devices recover media clock timing from the clock master stream, using it to synchronise the slave's media clock with the master. If a common reference clock is available, NTP timestamps in the master clock RTP media stream are taken using the shared reference clock. The NTP timestamps communicate information about media clock timing (rate and phase) from the master to the slave devices. NTP timestamps are communicated in the usual RTP fashion via RTCP SRs, or via the [RFC6051] header extension. If no shared reference clock is available or signalled, a slave can synchronise to the master's media clock using RTP timestamps alone as described in Section 5.1 of [RFC3550]. Note that the slaving of a device media clock to a master device does not affect RTP inter-media synchronisation. Time-aligned playout of two or more RTP sources still relies upon NTP timestamps supplied via RTCP SRs or by the RFC 6051 timestamp header extension. In a given system, master clock identifiers must uniquely identify a single media clock source. Such identifiers MAY be manually configured; however, identifiers SHOULD be generated according to the "short-term persistent RTCP CNAME" algorithm as described in [RFC7022]. Master clock identifiers not already in base64 format MUST be encoded as base64 strings when used in SDP. Although the CNAME algorithm is used to generate the master clock identifier, it is used to tag RTP sources in SDP descriptions and does not appear in RTCP as a CNAME. A reference stream can be an RTP stream or an Audio Video Bridging (AVB) stream based on the [IEEE1722] standard.
Top   ToC   RFC7273 - Page 16
   An RTP clock master stream SHOULD be identified at the source level
   by an SSRC [RFC5576] and master clock identifier.  An RTP stream that
   provides media clock timing directly from a reference media clock
   (e.g., internal crystal, audio word clock, or video black burst
   signal) SHOULD tag the stream as a master clock source using the
   "src:" prefix.  If master clock identifiers are declared at the media
   or session level, all RTP sources at or below the level of
   declaration MUST provide equivalent timing to a slave receiver.

      a=ssrc:<ssrc> mediaclk:id=src:<media-clktag> sender

      a=mediaclk:id=src:<media-clktag> sender

   A transmitted RTP stream slaved to the media clock master is
   signalled by including a master clock identifier:

      a=mediaclk:id=<media-clktag> sender

   An RTP media sender indicates that it is slaved to an IEEE 1722 clock
   master via a stream identifier (an EUI-64):

      a=mediaclk:IEEE1722=<StreamID>

   An RTP media sender may gateway IEEE 1722 media clock timing to RTP:

      a=mediaclk:id=src:<media-clktag> IEEE1722=<StreamID>

5.4. SDP Signalling of Media Clock Source

Specification of the media clock source may be at any or all levels (session, media, or source) of an SDP description (see level definitions (Section 3) earlier in this document for more information). Media clock source signalling included at session level provides default parameters for all RTP sessions and sources in the session description. More specific signalling included at the media level overrides session-level signalling. Further, source-level signalling overrides media clock source signalling at the enclosing media level and session level. Media clock source signalling may be present or absent on a per- stream basis. In the absence of media clock source signals, receivers assume an asynchronous media clock generated by the sender. Media clock source parameters may be repeated at a given level (i.e., for a session or source) to provide information about additional clock sources. If the attribute is repeated at a given level, all
Top   ToC   RFC7273 - Page 17
   clocks described at that level are comparable clock sources and may
   be used interchangeably.

   General forms of usage:

   session level:  a=mediaclk:<mediaclock>

   media level:  a=mediaclk:<mediaclock>

   source level:  a=ssrc:<ssrc-id> mediaclk:<mediaclock>

   ABNF [RFC5234] grammar for the media clock reference attribute:

   ; external references:
   integer     = <See RFC 4566>
   token       = <See RFC 4566>
   byte-string = <See RFC 4566>
   base64      = <See RFC 4566>
   SP          = <See RFC 5234>
   DIGIT       = <See RFC 5234>
   HEXDIG      = <See RFC 5234>

   media-clksrc = "mediaclk:" [media-clkid SP] mediaclock

   media-clkid  = "id=" [ "src:" ] media-clktag
   media-clktag = base64

   mediaclock   = sender / direct / ieee1722-streamid / mediaclock-ext

   mediaclock-ext         = mediaclock-param-name mediaclock-param-value
   mediaclock-param-name  = token
   mediaclock-param-value = [ "=" byte-string ]

   sender = "sender"
   direct = "direct" [ "=" 1*DIGIT ] [SP rate]
   rate   = "rate=" integer "/" integer

   ieee1722-streamid = "IEEE1722=" avb-stream-id
   avb-stream-id     = EUI64
   EUI64 = 7(2HEXDIG "-") 2HEXDIG

                  Figure 5: Media Clock Source Signalling
Top   ToC   RFC7273 - Page 18

5.5. Examples

Figure 6 shows an example SDP description -- 8 channels of 24-bit, 48 kHz audio transmitted as a multicast stream. Media clock is derived directly from an IEEE 1588-2008 reference. v=0 o=- 1311738121 1311738121 IN IP4 192.0.2.1 c=IN IP4 233.252.0.1/64 s= t=0 0 m=audio 5004 RTP/AVP 96 a=rtpmap:96 L24/48000/8 a=sendonly a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0 a=mediaclk:direct=963214424 Figure 6: Media Clock Directly Referenced to IEEE 1588-2008 Figure 7 shows an example SDP description -- 2 channels of 24-bit, 44056 kHz NTSC "pull-down" media clock derived directly from an IEEE 1588-2008 reference clock. v=0 o=- 1311738121 1311738121 IN IP4 192.0.2.1 c=IN IP4 233.252.0.1/64 s= t=0 0 m=audio 5004 RTP/AVP 96 a=rtpmap:96 L24/44100/2 a=sendonly a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0 a=mediaclk:direct=963214424 rate=1000/1001 Figure 7: "Oddball" Sample Rate Directly Referenced to IEEE 1588-2008
Top   ToC   RFC7273 - Page 19
   Figure 8 shows the same 48 kHz audio transmission from Figure 6 with
   media clock derived from another RTP stream.

   v=0
   o=- 1311738121 1311738121 IN IP4 192.0.2.1
   c=IN IP4 233.252.0.1/64
   s=
   t=0 0
   m=audio 5004 RTP/AVP 96
   a=rtpmap:96 L24/48000/2
   a=sendonly
   a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0
   a=mediaclk:id=MDA6NjA6MmI6MjA6MTI6MWY= sender

         Figure 8: RTP Stream with Media Clock Slaved to a Master

   Figure 9 shows the same 48 kHz audio transmission from Figure 6 with
   media clock derived from an IEEE 1722 AVB stream.

   v=0
   o=- 1311738121 1311738121 IN IP4 192.0.2.1
   c=IN IP4 233.252.0.1/64
   s=
   t=0 0
   m=audio 5004 RTP/AVP 96
   a=rtpmap:96 L24/48000/2
   a=sendonly
   a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0
   a=mediaclk:IEEE1722=38-D6-6D-8E-D2-78-13-2F

            Figure 9: RTP Stream with Media Clock Slaved to an
                          IEEE 1722 Master Device

6. Signalling Considerations

Signalling of timestamp reference clock source (Section 4.8) and media clock source (Section 5.4) is defined to be used either by applications that implement the SDP Offer/Answer model [RFC3264] or by applications that use SDP to describe media and transport configurations. A description SHOULD include both reference clock signalling and media clock signalling. If no reference clock is available, this SHOULD be signalled as a local reference (Section 4.6).
Top   ToC   RFC7273 - Page 20
   When no media clock signalling is present, an asynchronous media
   clock (Section 5.1) MUST be assumed.  When no reference clock
   signalling is present, a local reference clock (Section 4.6) MUST be
   assumed.

   If a reference clock is not signalled or a local reference is
   specified, the corresponding media clock may be established as rate
   synchronised with no assurance of time synchronisation.

   When the description signals a direct-referenced media clock
   (Section 5.2), reference clock signalling is REQUIRED.  Asynchronous
   and stream-referenced media clocks (Section 5.3) MAY be specified
   with or without a reference clock signalling.

6.1. Usage in Offer/Answer

During offer/answer, clock source signalling via SDP uses a declarative model. Supported media and/or reference clocks are specified in the offered SDP description. The answerer may accept or reject the offer in an application-specific way depending on the clocks that are available and the clocks that are offered. For example, an answerer may choose to accept an offer that lacks a common clock by falling back to a lower-performance mode of operation (e.g., by assuming reference or media clocks are local rather than shared). Conversely, the answerer may choose to reject the offer when the offered clock specifications indicate that the available reference and/or media clocks are incompatible. While negotiation of reference clock and media clock attributes is not defined in this document, negotiation MAY be accomplished using the capabilities negotiation procedures defined in [RFC5939].

6.1.1. Indicating Support for Clock Source Signalling

An offerer or answerer indicates support for media clock signalling by including a reference or media clock specification in the SDP description. An offerer or answerer without specific reference or media clocks to signal SHOULD indicate support for clock source signalling by including a local reference clock (Section 4.6) specification in the SDP description.

6.1.2. Timestamp Reference Clock

If one or more of the reference clocks specified in the offer are usable by the answerer, the answerer SHOULD respond with an answer containing the subset of reference clock specifications in the offer that are usable by the answerer. If the answerer rejects the offer because the available reference clocks are incompatible, the
Top   ToC   RFC7273 - Page 21
   rejection MUST contain at least one timestamp reference clock
   specification usable by the answerer so that appropriate information
   is available for diagnostics.  If no external reference clock is
   available to the answerer, a local reference clock (Section 4.6)
   specification SHOULD be included in the rejection.

   In both offers and answers, multiple reference clock specifications
   indicate equivalent clocks from different sources that may be used
   interchangeably.  RTP senders and receivers are assured proper
   synchronisation regardless of which of the specified sources is
   chosen and, in support of fault tolerance, may switch clock sources
   while streaming.

6.1.3. Media Clock

If the media clock mode specified in the offer is acceptable to the answerer, the answerer SHOULD respond with an answer containing the same media clock specification as the offer. If the answerer rejects the offer because the available reference clocks are incompatible, the rejection MUST contain a media clock specification supported by the answerer so that appropriate information is available for diagnostics. If no shared media clocks are available to the answerer, an asynchronous media clock (Section 5.1) specification SHOULD be included in the rejection.

6.2. Usage Outside of Offer/Answer

SDP can be employed outside of the offer/answer context, for instance, for multimedia sessions that are announced through the Session Announcement Protocol (SAP) [RFC2974] or streamed through the Real Time Streaming Protocol (RTSP) [RFC2326]. Devices using published descriptions to join sessions SHOULD assess their synchronisation compatibility with the described session based on the clock source signalling and SHOULD NOT attempt to join a session with incompatible reference or media clocks.

7. Security Considerations

Entities receiving and acting upon an SDP message should note that a session description cannot be trusted unless it has been obtained by an authenticated transport protocol from a known and trusted source. Many different transport protocols may be used to distribute a session description, and the nature of the authentication will differ from transport to transport. For some transports, security features are often not deployed. In case a session description has not been obtained in a trusted manner, the endpoint should exercise care because, among other attacks, the media sessions received may not be
Top   ToC   RFC7273 - Page 22
   the intended ones, the destination where media is sent to may not be
   the expected one, and any of the parameters of the session may be
   incorrect.

   Incorrect reference or media clock parameters may cause devices or
   streams to synchronise to unintended clock sources.  Normally, this
   simply results in failure to establish a session or failure to
   synchronise once connected.  Enough devices fraudulently assigned to
   a specific clock source (e.g., a particular IEEE 1588 grandmaster)
   may, however, constitute a successful denial-of-service attack on
   that source.  Devices MAY wish to validate the integrity of the clock
   description through some means before connecting to unfamiliar clock
   sources.

   The timestamp reference clocks negotiated by this protocol are used
   to provide media timing information to RTP.  Negotiated timestamp
   reference clocks should not be relied upon to provide a secure time
   reference for security critical operations (e.g., the expiration of
   public key certificates).

8. IANA Considerations

This document defines two new SDP attributes: "ts-refclk" and "mediaclk", within the existing Internet Assigned Numbers Authority (IANA) registry of SDP Parameters. This document also defines a new IANA registry subordinate to the IANA SDP Parameters registry: the Media Clock Source Parameters registry. Within this new registry, this document defines an initial set of three media clock source parameters. Further, this document defines a second new IANA registry subordinate to the IANA SDP Parameters registry: the Timestamp Reference Clock Source Parameters registry. Within this new registry, this document defines an initial six parameters.
Top   ToC   RFC7273 - Page 23

8.1. Reference Clock SDP Parameter

The SDP attribute "ts-refclk" defined by this document is registered with the IANA registry of SDP Parameters as follows: SDP Attributes ( "att-field (both session and media level)" & "att-field (source level)" ): Attribute name: ts-refclk Long form: Timestamp reference clock source Type of name: att-field Type of attribute: Session, media, and source level Subject to charset: No Purpose: See Section 4 of this document Reference: This document Values: See Section 8.3 of this document Figure 10: Reference Clock SDP Parameter IANA Registration The attribute has an extensible parameter field; therefore, a registry for these parameters is required. This new registry is defined in Section 8.3.
Top   ToC   RFC7273 - Page 24

8.2. Media Clock SDP Parameter

The SDP attribute "mediaclk" defined by this document is registered with the IANA registry of SDP Parameters as follows: SDP Attributes ( "att-field (both session and media level)" & "att-field (source level)" ): Attribute name: mediaclk Long form: Media clock source Type of name: att-field Type of attribute: Session, media, and source level Subject to charset: No Purpose: See Section 5 of this document Reference: This document Values: See Section 8.4 of this document Figure 11: Media Clock SDP Parameter IANA Registration The attribute has an extensible parameter field; therefore, a registry for these parameters is required. The new registry is defined in Section 8.4.

8.3. Timestamp Reference Clock Source Parameters Registry

This document creates a new IANA subregistry called the Timestamp Reference Clock Source Parameters registry, subordinate to the IANA SDP Parameters registry. Each entry in the Timestamp Reference Clock Source Parameters registry contains: Name: Token used in the SDP description (clksrc-param-name) Long name: Descriptive name for the timestamp reference clock source Reference: Reference to the document describing the SDP token (clksrc-param-name) and syntax for the optional value associated with the token (mediaclock-param-value)
Top   ToC   RFC7273 - Page 25
   Initial values for the Timestamp Reference Clock Source Parameters
   registry are given below.

   Future assignments are to be made through the Specification Required
   policy [RFC5226].  The Name field in the table corresponds to a new
   value corresponding to clksrc-param-name.  The Reference must specify
   a syntax corresponding to clksrc-param-value.

   +---------+------------------------------+--------------------------+
   | Name    | Long Name                    | Reference                |
   +---------+------------------------------+--------------------------+
   | ntp     | Network Time Protocol        | This document, Section 4 |
   |         |                              |                          |
   | ptp     | Precision Time Protocol      | This document, Section 4 |
   |         |                              |                          |
   | gps     | Global Positioning System    | This document, Section 4 |
   |         |                              |                          |
   | gal     | Galileo                      | This document, Section 4 |
   |         |                              |                          |
   | glonass | Global Navigation Satellite  | This document, Section 4 |
   |         | System                       |                          |
   |         |                              |                          |
   | local   | Local Clock                  | This document, Section 4 |
   |         |                              |                          |
   | private | Private Clock                | This document, Section 4 |
   +---------+------------------------------+--------------------------+

8.4. Media Clock Source Parameters Registry

This document creates a new IANA subregistry called the Media Clock Source Parameters registry, subordinate to the IANA SDP Parameters registry. Each entry in the Media Clock Source Parameters registry contains: Name: Token used in the SDP description (mediaclock-param-name) Long name: Descriptive name for the media clock source type Reference: Reference to the document describing the SDP token (mediaclock-param-name) and syntax for the optional value associated with the token (mediaclock-param-value) Initial values for the Media Clock Source Parameters registry are given below.
Top   ToC   RFC7273 - Page 26
   Future assignments are to be made through the Specification Required
   policy [RFC5226].  The Name field in the table corresponds to a new
   value corresponding to mediaclock-param-name.  The Reference must
   specify a syntax corresponding to mediaclock-param-value.

   +----------+-----------------------------+--------------------------+
   | Name     | Long Name                   | Reference                |
   +----------+-----------------------------+--------------------------+
   | sender   | Asynchronously Generated    | This document, Section 5 |
   |          | Media Clock                 |                          |
   |          |                             |                          |
   | direct   | Direct-Referenced Media     | This document, Section 5 |
   |          | Clock                       |                          |
   |          |                             |                          |
   | IEEE1722 | IEEE1722 Media Stream       | This document, Section 5 |
   |          | Identifier                  |                          |
   +----------+-----------------------------+--------------------------+

8.5. Source-Level Attributes

[RFC5576] requires new source-level attributes to be registered with the IANA registry named "att-field (source level)".

8.5.1. Source-Level Timestamp Reference Clock Attribute

The source-level SDP attribute "ts-refclk" defined by this document is registered with the "att-field (source level)" IANA registry of SDP Parameters, according to Figure 10.

8.5.2. Source-Level Media Clock Attribute

The source-level SDP attribute "mediaclk" defined by this document is registered with the "att-field (source level)" IANA registry of SDP Parameters, according to Figure 11.

9. Acknowledgements

The authors would like to thank Magnus Westerlund and Paul Kyzivat for valuable comments that resulted in important improvements to this document.
Top   ToC   RFC7273 - Page 27

10. References

10.1. Normative References

[IEEE1588-2002] IEEE, "1588-2002 - IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems", October 2002, <http://standards.ieee.org/findstds/ standard/1588-2002.html>. [IEEE1588-2008] IEEE, "1588-2008 - IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems", July 2008, <http://standards.ieee.org/findstds/ standard/1588-2008.html>. [IEEE1722] IEEE, "1722-2001 - IEEE Standard for Layer 2 Transport Protocol for Time Sensitive Applications in a Bridged Local Area Network", May 2011, <http://standards.ieee.org/findstds/ standard/1722-2011.html>. [IEEE802.1AS-2011] IEEE, "802.1AS-2011 - IEEE Standard for Local and Metropolitan Area Networks - Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks", February 2011, <http://standards.ieee.org/findstds/ standard/802.1AS-2011.html>. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with Session Description Protocol (SDP)", RFC 3264, June 2002. [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", STD 64, RFC 3550, July 2003. [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session Description Protocol", RFC 4566, July 2006.
Top   ToC   RFC7273 - Page 28
   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              May 2008.

   [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234, January 2008.

   [RFC5576]  Lennox, J., Ott, J., and T. Schierl, "Source-Specific
              Media Attributes in the Session Description Protocol
              (SDP)", RFC 5576, June 2009.

   [RFC5905]  Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
              Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, June 2010.

   [RFC6051]  Perkins, C. and T. Schierl, "Rapid Synchronisation of RTP
              Flows", RFC 6051, November 2010.

   [RFC7022]  Begen, A., Perkins, C., Wing, D., and E. Rescorla,
              "Guidelines for Choosing RTP Control Protocol (RTCP)
              Canonical Names (CNAMEs)", RFC 7022, September 2013.

10.2. Informative References

[AES11-2009] Audio Engineering Society, "AES11-2009: AES recommended practice for digital audio engineering - Synchronization of digital audio equipment in studio operations", February 2010, <http://www.aes.org/standards/>. [IEEE802.1BA-2011] IEEE, "802.1BA-2011 - IEEE Standard for Local and metropolitan area networks -- Audio Video Bridging (AVB) Systems", September 2011, <http://standards.ieee.org/findstds/ standard/802.1BA-2011.html>. [IS-GPS-200F] Global Positioning Systems Directorate, "Navstar GPS Space Segment/Navigation User Segment Interfaces", IS-GPS-200F , September 2011, <http://www.navcen.uscg.gov/pdf/IS-GPS-200F.pdf>. [Olsen] Olsen, D., "Time Accuracy Requirements in Audio Networks", April 2007, <http://www.ieee802.org/1/files/public/docs2007/ as-dolsen-time-accuracy-0407.pdf>.
Top   ToC   RFC7273 - Page 29
   [RFC0868]  Postel, J. and K. Harrenstien, "Time Protocol", STD 26,
              RFC 868, May 1983.

   [RFC2326]  Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time
              Streaming Protocol (RTSP)", RFC 2326, April 1998.

   [RFC2974]  Handley, M., Perkins, C., and E. Whelan, "Session
              Announcement Protocol", RFC 2974, October 2000.

   [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              June 2002.

   [RFC5939]  Andreasen, F., "Session Description Protocol (SDP)
              Capability Negotiation", RFC 5939, September 2010.

   [RFC7164]  Gross, K. and R. Brandenburg, "RTP and Leap Seconds", RFC
              7164, March 2014.

   [RFC7272]  Brandenburg, R., Stokking, H., Deventer, O., Boronat, F.,
              Montagud, M., and K. Gross, "Inter-Destination Media
              Synchronization (IDMS) Using the RTP Control Protocol
              (RTCP)", RFC 7272, June 2014.

   [SMPTE-318M-1999]
              Society of Motion Picture & Television Engineers,
              "Television and Audio - Synchronization of 59.94- or 50-Hz
              Related Video and Audio Systems in Analog and Digital
              Areas - Reference Signals", ST 318:1999,
              <http://standards.smpte.org/>.
Top   ToC   RFC7273 - Page 30

Authors' Addresses

Aidan Williams Audinate Level 1, 458 Wattle St Ultimo, NSW 2007 Australia Phone: +61 2 8090 1000 Fax: +61 2 8090 1001 EMail: aidan.williams@audinate.com URI: http://www.audinate.com/ Kevin Gross AVA Networks Boulder, CO US EMail: kevin.gross@avanw.com URI: http://www.avanw.com/ Ray van Brandenburg TNO Brassersplein 2 Delft 2612CT The Netherlands Phone: +31-88-866-7000 EMail: ray.vanbrandenburg@tno.nl Hans Stokking TNO Brassersplein 2 Delft 2612CT The Netherlands EMail: hans.stokking@tno.nl