Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 6726

FLUTE - File Delivery over Unidirectional Transport

Pages: 46
Proposed Standard
Errata
Obsoletes:  3926
Part 1 of 2 – Pages 1 to 22
None   None   Next

Top   ToC   RFC6726 - Page 1
Internet Engineering Task Force (IETF)                          T. Paila
Request for Comments: 6726                                         Nokia
Obsoletes: 3926                                                 R. Walsh
Category: Standards Track                                      Nokia/TUT
ISSN: 2070-1721                                                  M. Luby
                                             Qualcomm Technologies, Inc.
                                                                 V. Roca
                                                                   INRIA
                                                             R. Lehtonen
                                                             TeliaSonera
                                                           November 2012


          FLUTE - File Delivery over Unidirectional Transport

Abstract

This document defines File Delivery over Unidirectional Transport (FLUTE), a protocol for the unidirectional delivery of files over the Internet, which is particularly suited to multicast networks. The specification builds on Asynchronous Layered Coding, the base protocol designed for massively scalable multicast distribution. This document obsoletes RFC 3926. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6726.
Top   ToC   RFC6726 - Page 2
Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

Table of Contents

1. Introduction ....................................................3 1.1. Applicability Statement ....................................5 1.1.1. The Target Application Space ........................5 1.1.2. The Target Scale ....................................5 1.1.3. Intended Environments ...............................5 1.1.4. Weaknesses ..........................................6 2. Conventions Used in This Document ...............................6 3. File Delivery ...................................................7 3.1. File Delivery Session ......................................8 3.2. File Delivery Table .......................................10 3.3. Dynamics of FDT Instances within a File Delivery Session ..12 3.4. Structure of FDT Instance Packets .........................15 3.4.1. Format of FDT Instance Header ......................16 3.4.2. Syntax of FDT Instance .............................17 3.4.3. Content Encoding of FDT Instance ...................21 3.5. Multiplexing of Files within a File Delivery Session ......22 4. Channels, Congestion Control, and Timing .......................23 5. Delivering FEC Object Transmission Information .................24 6. Describing File Delivery Sessions ..............................26
Top   ToC   RFC6726 - Page 3
   7. Security Considerations ........................................27
      7.1. Problem Statement .........................................27
      7.2. Attacks against the Data Flow .............................28
           7.2.1. Access to Confidential Files .......................28
           7.2.2. File Corruption ....................................28
      7.3. Attacks against the Session Control Parameters and
           Associated Building Blocks ................................30
           7.3.1. Attacks against the Session Description ............30
           7.3.2. Attacks against the FDT Instances ..................31
           7.3.3. Attacks against the ALC/LCT Parameters .............31
           7.3.4. Attacks against the Associated Building Blocks .....32
      7.4. Other Security Considerations .............................32
      7.5. Minimum Security Recommendations ..........................33
   8. IANA Considerations ............................................34
      8.1. Registration of the FDT Instance XML Namespace ............34
      8.2. Registration of the FDT Instance XML Schema ...............34
      8.3. Registration of the application/fdt+xml Media Type ........35
      8.4. Creation of the FLUTE Content Encoding Algorithms
           Registry ..................................................36
      8.5. Registration of LCT Header Extension Types ................36
   9. Acknowledgments ................................................36
   10. Contributors ..................................................37
   11. Change Log ....................................................37
      11.1. RFC 3926 to This Document ................................37
   12. References ....................................................40
      12.1. Normative References .....................................40
      12.2. Informative References ...................................41
   Appendix A. Receiver Operation (Informative) ......................44
   Appendix B. Example of FDT Instance (Informative) .................45

1. Introduction

This document defines FLUTE version 2, a protocol for unidirectional delivery of files over the Internet. This specification is not backwards compatible with the previous experimental version defined in [RFC3926] (see Section 11 for details). The specification builds on Asynchronous Layered Coding (ALC), version 1 [RFC5775], the base protocol designed for massively scalable multicast distribution. ALC defines transport of arbitrary binary objects. For file delivery applications, mere transport of objects is not enough, however. The end systems need to know what the objects actually represent. This document specifies a technique called FLUTE -- a mechanism for signaling and mapping the properties of files to concepts of ALC in a way that allows receivers to assign those parameters for received objects. Consequently, throughout this document the term 'file' relates to an 'object' as discussed in ALC. Although this
Top   ToC   RFC6726 - Page 4
   specification frequently makes use of multicast addressing as an
   example, the techniques are similarly applicable for use with unicast
   addressing.

   This document defines a specific transport application of ALC, adding
   the following specifications:

   -  Definition of a file delivery session built on top of ALC,
      including transport details and timing constraints.

   -  In-band signaling of the transport parameters of the ALC session.

   -  In-band signaling of the properties of delivered files.

   -  Details associated with the multiplexing of multiple files within
      a session.

   This specification is structured as follows.  Section 3 begins by
   defining the concept of the file delivery session.  Following that,
   it introduces the File Delivery Table, which forms the core part of
   this specification.  Further, it discusses multiplexing issues of
   transmission objects within a file delivery session.  Section 4
   describes the use of congestion control and channels with FLUTE.
   Section 5 defines how the Forward Error Correction (FEC) Object
   Transmission Information is to be delivered within a file delivery
   session.  Section 6 defines the required parameters for describing
   file delivery sessions in a general case.  Section 7 outlines
   security considerations regarding file delivery with FLUTE.  Last,
   there are two informative appendices.  Appendix A describes an
   envisioned receiver operation for the receiver of the file delivery
   session.  Readers who want to see a simple example of FLUTE in
   operation should refer to Appendix A right away.  Appendix B gives an
   example of a File Delivery Table.

   This specification contains part of the definitions necessary to
   fully specify a Reliable Multicast Transport (RMT) protocol in
   accordance with [RFC2357].

   This document obsoletes [RFC3926], which contained a previous version
   of this specification and was published in the "Experimental"
   category.  This Proposed Standard specification is thus based on
   [RFC3926] and has been updated according to accumulated experience
   and growing protocol maturity since the publication of [RFC3926].
   Said experience applies both to this specification itself and to
   congestion control strategies related to the use of this
   specification.
Top   ToC   RFC6726 - Page 5
   The differences between [RFC3926] and this document are listed in
   Section 11.

   This document updates ALC [RFC5775] and Layered Coding Transport
   (LCT) [RFC5651] in the sense that it defines two new header
   extensions, EXT_FDT and EXT_CENC.

1.1. Applicability Statement

1.1.1. The Target Application Space

FLUTE is applicable to the delivery of large and small files to many hosts, using delivery sessions of several seconds or more. For instance, FLUTE could be used for the delivery of large software updates to many hosts simultaneously. It could also be used for continuous, but segmented, data such as time-lined text for subtitling -- potentially leveraging its layering inheritance from ALC and LCT to scale the richness of the session to the congestion status of the network. It is also suitable for the basic transport of metadata, for example, Session Description Protocol (SDP) [RFC4566] files that enable user applications to access multimedia sessions.

1.1.2. The Target Scale

Massive scalability is a primary design goal for FLUTE. IP multicast is inherently massively scalable, but the best-effort service that it provides does not provide session management functionality, congestion control, or reliability. FLUTE provides all of this by using ALC and IP multicast without sacrificing any of the inherent scalability of IP multicast.

1.1.3. Intended Environments

All of the environmental requirements and considerations that apply to the RMT building blocks used by FLUTE shall also apply to FLUTE. These are the ALC protocol instantiation [RFC5775], the LCT building block [RFC5651], and the FEC building block [RFC5052]. FLUTE can be used with both multicast and unicast delivery, but its primary application is for unidirectional multicast file delivery. FLUTE requires connectivity between a sender and receivers but does not require connectivity from receivers to a sender. Because of its low expectations, FLUTE works with most types of networks, including LANs, WANs, Intranets, the Internet, asymmetric networks, wireless networks, and satellite networks.
Top   ToC   RFC6726 - Page 6
   FLUTE is compatible with both IPv4 and IPv6, as no part of the packet
   is IP version specific.  FLUTE works with both multicast models:
   Any-Source Multicast (ASM) [RFC1112] and Source-Specific Multicast
   (SSM) [PAPER.SSM].

   FLUTE is applicable for both shared networks, such as the Internet,
   with a suitable congestion control building block; and provisioned/
   controlled networks, such as wireless broadcast radio systems, with a
   traffic-shaping building block.

1.1.4. Weaknesses

FLUTE congestion control protocols depend on the ability of a receiver to change multicast subscriptions between multicast groups supporting different rates and/or layered codings. If the network does not support this, then the FLUTE congestion control protocols may not be amenable to such a network. FLUTE can also be used for point-to-point (unicast) communications. At a minimum, implementations of ALC MUST support the Wave and Equation Based Rate Control (WEBRC) [RFC3738] multiple-rate congestion control scheme [RFC5775]. However, since WEBRC has been designed for massively scalable multicast flows, it is not clear how appropriate it is to the particular case of unicast flows. Using a separate point-to-point congestion control scheme is another alternative. How to do that is outside the scope of the present document. FLUTE provides reliability using the FEC building block. This will reduce the error rate as seen by applications. However, FLUTE does not provide a method for senders to verify the reception success of receivers, and the specification of such a method is outside the scope of this document.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. The terms "object" and "transmission object" are consistent with the definitions in ALC [RFC5775] and LCT [RFC5651]. The terms "file" and "source object" are pseudonyms for "object".
Top   ToC   RFC6726 - Page 7

3. File Delivery

Asynchronous Layered Coding [RFC5775] is a protocol designed for delivery of arbitrary binary objects. It is especially suitable for massively scalable, unidirectional multicast distribution. ALC provides the basic transport for FLUTE, and thus FLUTE inherits the requirements of ALC. This specification is designed for the delivery of files. The core of this specification is to define how the properties of the files are carried in-band together with the delivered files. As an example, let us consider a 5200-byte file referred to by "http://www.example.com/docs/file.txt". Using the example, the following properties describe the properties that need to be conveyed by the file delivery protocol. * Identifier of the file, expressed as a URI [RFC3986]. The identifier MAY provide a location for the file. In the above example: "http://www.example.com/docs/file.txt". * File name (usually, this can be concluded from the URI). In the above example: "file.txt". * File type, expressed as Internet Media Types (often referred to as "Media Types"). In the above example: "text/plain". * File size, expressed in octets. In the above example: "5200". If the file is content encoded, then this is the file size before content encoding. * Content encoding of the file, within transport. In the above example, the file could be encoded using ZLIB [RFC1950]. In this case, the size of the transmission object carrying the file would probably differ from the file size. The transmission object size is delivered to receivers as part of the FLUTE protocol. * Security properties of the file, such as digital signatures, message digests, etc. For example, one could use S/MIME [RFC5751] as the content encoding type for files with this authentication wrapper, and one could use XML Digital Signatures (XML-DSIG) [RFC3275] to digitally sign the file. XML-DSIG can also be used to provide tamper prevention, e.g., in the Content-Location field. Content encoding is applied to file data before FEC protection.
Top   ToC   RFC6726 - Page 8
   For each unique file, FLUTE encodes the attributes listed above and
   other attributes as children of an XML file element.  A table of XML
   file elements is transmitted as a special file called a 'File
   Delivery Table' (FDT), which is further described in the next
   subsection and in Section 3.2.

3.1. File Delivery Session

ALC is a protocol instantiation of the Layered Coding Transport (LCT) building block [RFC5651]. Thus, ALC inherits the session concept of LCT. In this document, we will use the concept of the ALC/LCT session to collectively denote the interchangeable terms "ALC session" and "LCT session". An ALC/LCT session consists of a set of logically grouped ALC/LCT channels associated with a single sender sending ALC/LCT packets for one or more objects. An ALC/LCT channel is defined by the combination of a sender and an address associated with the channel by the sender. A receiver joins a channel to start receiving the data packets sent to the channel by the sender, and a receiver leaves a channel to stop receiving data packets from the channel. One of the fields carried in the ALC/LCT header is the Transport Session Identifier (TSI), an integer carried in a field of size 16, 32, or 48 bits (note that the TSI may be carried by other means, in which case it is absent from the LCT header [RFC5651]). The (source IP address, TSI) pair uniquely identifies a session. Note that the TSI is scoped by the IP address, so the same TSI may be used by several source IP addresses at once. Thus, the receiver uses the (source IP address, TSI) pair from each packet to uniquely identify the session sending each packet. When a session carries multiple objects, the Transmission Object Identifier (TOI) field within the ALC/LCT header names the object used to generate each packet. Note that each object is associated with a unique TOI within the scope of a session. A FLUTE session consistent with this specification MUST use FLUTE version 2 as specified in this document. Thus, all sessions consistent with this specification MUST set the FLUTE version to 2. The FLUTE version is carried within the EXT_FDT Header Extension (defined in Section 3.4.1) in the ALC/LCT layer. A FLUTE session consistent with this specification MUST use ALC version 1 as specified in [RFC5775], and LCT version 1 as specified in [RFC5651]. If multiple FLUTE sessions are sent to a channel, then receivers MUST determine the FLUTE protocol version, based on version fields and the (source IP address, TSI) pair carried in the ALC/LCT header of the packet. Note that when a receiver first begins receiving packets, it
Top   ToC   RFC6726 - Page 9
   might not know the FLUTE protocol version, as not every LCT packet
   carries the EXT_FDT header (containing the FLUTE protocol version).
   A new receiver MAY keep an open binding in the LCT protocol layer
   between the TSI and the FLUTE protocol version, until the EXT_FDT
   header arrives.  Alternatively, a new receiver MAY discover a binding
   between TSI and FLUTE protocol version via a session discovery
   protocol that is out of scope of this document.

   If the sender's IP address is not accessible to receivers, then
   packets that can be received by receivers contain an intermediate IP
   address.  In this case, the TSI is scoped by this intermediate IP
   address of the sender for the duration of the session.  As an
   example, the sender may be behind a Network Address Translation (NAT)
   device that temporarily assigns an IP address for the sender.  In
   this case, the TSI is scoped by the intermediate IP address assigned
   by the NAT.  As another example, the sender may send its original
   packets using IPv6, but some portions of the network may not be IPv6
   capable.  Thus, there may be an IPv6-to-IPv4 translator that changes
   the IP address of the packets to a different IPv4 address.  In this
   case, receivers in the IPv4 portion of the network will receive
   packets containing the IPv4 address, and thus the TSI for them is
   scoped by the IPv4 address.  How the IP address of the sender to be
   used to scope the session by receivers is delivered to receivers,
   whether it is the sender's IP address or an intermediate IP address,
   is outside the scope of this document.

   When FLUTE is used for file delivery over ALC, the ALC/LCT session is
   called a file delivery session, and the ALC/LCT concept of 'object'
   denotes either a 'file' or a 'File Delivery Table Instance'
   (Section 3.2).

   Additionally, the following rules apply:

   *  The TOI field MUST be included in ALC packets sent within a FLUTE
      session, with the exception that ALC packets sent in a FLUTE
      session with the Close Session (A) flag set to 1 (signaling the
      end of the session) and that contain no payload (carrying no
      information for any file or FDT) SHALL NOT carry the TOI.  See
      Section 5.1 of [RFC5651] for the LCT definition of the Close
      Session flag, and see Section 4.2 of [RFC5775] for an example of
      the use of a TOI within an ALC packet.

   *  The TOI value '0' is reserved for the delivery of File Delivery
      Table Instances.  Each non-expired File Delivery Table Instance is
      uniquely identified by an FDT Instance ID within the EXT_FDT
      header defined in Section 3.4.1.
Top   ToC   RFC6726 - Page 10
   *  Each file in a file delivery session MUST be associated with a TOI
      (>0) in the scope of that session.

   *  Information carried in the headers and the payload of a packet is
      scoped by the source IP address and the TSI.  Information
      particular to the object carried in the headers and the payload of
      a packet is further scoped by the TOI for file objects, and is
      further scoped by both the TOI and the FDT Instance ID for FDT
      Instance objects.

3.2. File Delivery Table

The File Delivery Table (FDT) provides a means to describe various attributes associated with files that are to be delivered within the file delivery session. The following lists are examples of such attributes and are not intended to be mutually exclusive or exhaustive. Attributes related to the delivery of a file: - TOI value that represents the file - FEC Object Transmission Information (including the FEC Encoding ID and, if relevant, the FEC Instance ID) - Size of the transmission object carrying the file - Aggregate rate of sending packets to all channels Attributes related to the file itself: - Name, Identification, and Location of file (specified by the URI) - Media type of file - Size of file - Encoding of file - Message digest of file Some of these attributes MUST be included in the file description entry for a file; others are optional, as defined in Section 3.4.2. Logically, the FDT is a set of file description entries for files to be delivered in the session. Each file description entry MUST include the TOI for the file that it describes and the URI identifying the file. The TOI carried in each file description entry
Top   ToC   RFC6726 - Page 11
   is how FLUTE names the ALC/LCT data packets used for delivery of the
   file.  Each file description entry may also contain one or more
   descriptors that map the above-mentioned attributes to the file.

   Each file delivery session MUST have an FDT that is local to the
   given session.  The FDT MUST provide a file description entry mapped
   to a TOI for each file appearing within the session.  An object that
   is delivered within the ALC session, but not described in the FDT,
   other than the FDT itself, is not considered a 'file' belonging to
   the file delivery session.  This object received with an unmapped TOI
   (non-zero TOI that is not resolved by the FDT) SHOULD in general be
   ignored by a FLUTE receiver.  The details of how to do that are out
   of scope of this specification.

   Note that a client that joins an active file delivery session MAY
   receive data packets for a TOI > 0 before receiving any FDT Instance
   (see Section 3.3 for recommendations on how to limit the probability
   that this situation will occur).  Even if the TOI is not mapped to
   any file description entry, this is hopefully a transient situation.
   When this happens, system performance might be improved by caching
   such packets within a reasonable time window and storage size.  Such
   optimizations are use-case and implementation specific, and further
   details are beyond the scope of this document.

   Within the file delivery session, the FDT is delivered as FDT
   Instances.  An FDT Instance contains one or more file description
   entries of the FDT.  Any FDT Instance can be equal to, be a subset
   of, be a superset of, overlap with, or complement any other FDT
   Instance.  A certain FDT Instance may be repeated multiple times
   during a session, even after subsequent FDT Instances (with higher
   FDT Instance ID numbers) have been transmitted.  Each FDT Instance
   contains at least a single file description entry and at most the
   exhaustive set of file description entries of the files being
   delivered in the file delivery session.

   A receiver of the file delivery session keeps an FDT database for
   received file description entries.  The receiver maintains the
   database, for example, upon reception of FDT Instances.  Thus, at any
   given time the contents of the FDT database represent the receiver's
   current view of the FDT of the file delivery session.  Since each
   receiver behaves independently of other receivers, it SHOULD NOT be
   assumed that the contents of the FDT database are the same for all
   the receivers of a given file delivery session.

   Since the FDT database is an abstract concept, the structure and the
   maintenance of the FDT database are left to individual
   implementations and are thus out of scope of this specification.
Top   ToC   RFC6726 - Page 12

3.3. Dynamics of FDT Instances within a File Delivery Session

The following rules define the dynamics of the FDT Instances within a file delivery session: * For every file delivered within a file delivery session, there MUST be a file description entry included in at least one FDT Instance sent within the session. A file description entry contains at a minimum the mapping between the TOI and the URI. * An FDT Instance MAY appear in any part of the file delivery session, and packets for an FDT Instance MAY be interleaved with packets for other files or other FDT Instances within a session. * The TOI value of '0' MUST be reserved for delivery of FDT Instances. The use of other TOI values (i.e., an integer > 0) for FDT Instances is outside the scope of this specification. * The FDT Instance is identified by the use of a new fixed-length LCT Header Extension, EXT_FDT (defined later in this section). Each non-expired FDT Instance is uniquely identified within the file delivery session by its FDT Instance ID, carried by the EXT_FDT Header Extension. Any ALC/LCT packet carrying an FDT Instance MUST include EXT_FDT. * It is RECOMMENDED that an FDT Instance that contains the file description entry for a file be sent at least once before sending the described file within a file delivery session. This recommendation is intended to minimize the amount of file data that may be received by receivers in advance of the FDT Instance containing the entry for a file (such data must either be speculatively buffered or discarded). Note that this possibility cannot be completely eliminated, since the first transmission of FDT data might be lost. * Within a file delivery session, any TOI > 0 MAY be described more than once. For example, a previous FDT Instance 0 describes a TOI of value '3'. Now, subsequent FDT Instances can either keep TOI '3' unmodified in the table, not include it, or augment the description. However, subsequent FDT Instances MUST NOT change the parameters already described for a specific TOI. * An FDT Instance is valid until its expiration time. The expiration time is expressed within the FDT Instance payload as a UTF-8 decimal representation of a 32-bit unsigned integer. The value of this integer represents the 32 most significant bits of a 64-bit Network Time Protocol (NTP) [RFC5905] time value. These 32 bits provide an unsigned integer representing the time in
Top   ToC   RFC6726 - Page 13
      seconds relative to 0 hours 1 January 1900 in the case of the
      prime epoch (era 0) [RFC5905].  The handling of time wraparound
      (to happen in 2036) requires that the associated epoch be
      considered.  In any case, both a sender and a receiver easily
      determine to which (136-year) epoch the FDT Instance expiration
      time value pertains by choosing the epoch for which the expiration
      time is closest in time to the current time.

      Here is an example.  Let us imagine that a new FLUTE session is
      started on February 7th, 2036, 0h, i.e., at NTP time
      4,294,944,000, a few hours before the end of epoch 0.  In order to
      define an FDT Instance valid for the next 48 hours, The FLUTE
      sender sets an expiry time of 149,504.  This FDT Instance will
      expire exactly on February 9th, 2036, 0h.  A client that receives
      this FDT Instance on the 7th, 0h, just after it has been sent,
      immediately understands that this value corresponds to epoch 1.  A
      client that joins the session on February 8th, 0h, i.e., at NTP
      time 63,104, epoch 1, immediately understands that the 149,504 NTP
      timestamp corresponds to epoch 1.

   *  The space of FDT Instance IDs is limited by the associated field
      size (i.e., 20 bits) in the EXT_FDT Header Extension
      (Section 3.4.1).  Therefore, senders should take care to always
      have a large enough supply of available FDT Instance IDs when
      specifying FDT expiration times.

   *  The receiver MUST NOT use a received FDT Instance to interpret
      packets received beyond the expiration time of the FDT Instance.

   *  A sender MUST use an expiration time in the future upon creation
      of an FDT Instance relative to its Sender Current Time (SCT).

   *  Any FEC Encoding ID MAY be used for the sending of FDT Instances.
      The default is to use the Compact No-Code FEC Encoding ID 0
      [RFC5445] for the sending of FDT Instances.  (Note that since FEC
      Encoding ID 0 is the default for FLUTE, this implies that Source
      Block Number and Encoding Symbol ID lengths both default to
      16 bits each.)

   *  If the receiver does not support the FEC Scheme indicated by the
      FEC Encoding ID, the receiver MUST NOT decode the associated FDT.

   *  It is RECOMMENDED that the mechanisms used for file attribute
      delivery SHOULD achieve a delivery probability that is higher than
      the file recovery probability and the file attributes SHOULD be
      delivered at this higher priority before the delivery of the
      associated files begins.
Top   ToC   RFC6726 - Page 14
   Generally, a receiver needs to receive an FDT Instance describing a
   file before it is able to recover the file itself.  In this sense,
   FDT Instances are of higher priority than files.  Additionally, a
   FLUTE sender SHOULD assume that receivers will not receive all
   packets pertaining to FDT Instances.  The way FDT Instances are
   transmitted has a large impact on satisfying the recommendation
   above.  When there is a single file transmitted in the session, one
   way to satisfy the recommendation above is to repeatedly transmit on
   a regular enough basis FDT Instances describing the file while the
   file is being transmitted.  If an FDT Instance is longer than one
   packet payload in length, it is RECOMMENDED that an FEC code that
   provides protection against loss be used for delivering this FDT
   Instance.  When there are multiple files in a session concurrently
   being transmitted to receivers, the way the FDT Instances are
   structured and transmitted also has a large impact.  As an example, a
   way to satisfy the recommendation above is to transmit an FDT
   Instance that describes all files currently being transmitted, and to
   transmit this FDT Instance reliably, using the same techniques as
   explained for the case when there is a single file transmitted in a
   session.  If instead the concurrently transmitted files are described
   in separate FDT Instances, another way to satisfy this recommendation
   is to transmit all the relevant FDT Instances reliably, using the
   same techniques as explained for the case when there is a single file
   transmitted in a session.

   In any case, how often the description of a file is sent in an FDT
   Instance, how often an FDT Instance is sent, and how much FEC
   protection is provided for an FDT Instance (if longer than one packet
   payload) are dependent on the particular application and are outside
   the scope of this document.

   Sometimes the various attributes associated with files that are to be
   delivered within the file delivery session are sent out-of-band.  The
   details of how this is done are out of the scope of this document.
   However, it is still RECOMMENDED that any out-of-band transmission be
   managed in such a way that a receiver will be able to recover the
   attributes associated with a file at least as reliably as the
   receiver is able to receive enough packets containing encoding
   symbols to recover the file.  For example, the probability of a
   randomly chosen receiver being able to recover a given file can often
   be estimated based on a statistical model of reception conditions,
   the amount of data transmitted, and the properties of any Forward
   Error Correction in use.  The recommendation above suggests that
   mechanisms used for file attribute delivery should achieve a higher
   delivery probability than the file recovery probability.  The sender
   MAY also continue sending the various file attributes in-band, in
   addition to the out-of-band transmission.
Top   ToC   RFC6726 - Page 15

3.4. Structure of FDT Instance Packets

FDT Instances are carried in ALC packets with TOI = 0 and with an additional REQUIRED LCT Header extension called the FDT Instance Header. The FDT Instance Header (EXT_FDT) contains the FDT Instance ID that uniquely identifies FDT Instances within a file delivery session. Placement of the FDT Instance Header is the same as that of any other LCT Header Extension. There MAY be other LCT Header Extensions in use. The FDT Instance is encoded for transmission, like any other object, using an FEC Scheme (which MAY be the Compact No-Code FEC Scheme). The LCT Header Extensions are followed by the FEC Payload ID, and finally the Encoding Symbols for the FDT Instance, which contains one or more file description entries. An FDT Instance MAY span several ALC packets -- the number of ALC packets is a function of the file attributes associated with the FDT Instance. The FDT Instance Header is carried in each ALC packet carrying the FDT Instance. The FDT Instance Header is identical for all ALC/LCT packets for a particular FDT Instance. The overall format of ALC/LCT packets carrying an FDT Instance is depicted in Figure 1 below. All integer fields are carried in "big-endian" or "network order" format (i.e., most significant byte (octet) first). As defined in [RFC5775], all ALC/LCT packets are sent using UDP. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | UDP header | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Default LCT header (with TOI = 0) | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | LCT Header Extensions (EXT_FDT, EXT_FTI, etc.) | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | FEC Payload ID | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ FLUTE Payload: Encoding Symbol(s) ~ (for FDT Instance in an FDT packet) ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 1: Overall FDT Packet
Top   ToC   RFC6726 - Page 16

3.4.1. Format of FDT Instance Header

The FDT Instance Header (EXT_FDT) is a new fixed-length, ALC Protocol-Instantiation-specific LCT Header Extension [RFC5651]. The Header Extension Type (HET) for the extension is 192. Its format is defined below: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | HET = 192 | V | FDT Instance ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 2: EXT_FDT Format Version of FLUTE (V), 4 bits: This document specifies FLUTE version 2. Hence, in any ALC packet that carries an FDT Instance and that belongs to the file delivery session as specified in this specification MUST set this field to '2'. FDT Instance ID, 20 bits: For each file delivery session, the numbering of FDT Instances starts from '0' and is incremented by one for each subsequent FDT Instance. After reaching the maximum value (2^20-1), the numbering starts from the smallest FDT Instance ID value assigned to an expired FDT Instance. When wraparound from a greater FDT Instance ID value to a smaller FDT Instance ID value occurs, the smaller FDT Instance ID value is considered logically higher than the greater FDT Instance ID value. Then, the subsequent FDT Instances are assigned the next available smallest FDT Instance ID value, in order to always keep the FDT Instance ID values logically increasing. Senders MUST NOT reuse an FDT Instance ID value that is already in use for a non-expired FDT Instance. Sender behavior when all the FDT Instance IDs are used by non-expired FEC Instances is outside the scope of this specification and left to individual implementations of FLUTE. Receipt of an FDT Instance that reuses an FDT Instance ID value that is currently used by a non-expired FDT Instance MUST be considered an error case. Receiver behavior in this case (e.g., leave the session or ignore the new FDT Instance) is outside the scope of this specification and left to individual implementations of FLUTE. Receivers MUST be ready to handle FDT Instance ID wraparound and situations where missing FDT Instance IDs result in increments larger than one.
Top   ToC   RFC6726 - Page 17

3.4.2. Syntax of FDT Instance

The FDT Instance contains file description entries that provide the mapping functionality described in Section 3.2 above. The FDT Instance is an Extensible Markup Language (XML) structure that has a single root element "FDT-Instance". The "FDT-Instance" element MUST contain the "Expires" attribute, which provides the expiration time of the FDT Instance. In addition, the "FDT-Instance" element MAY contain the "Complete" attribute, a boolean that can be either set to '1' or 'true' for TRUE, or '0' or 'false' for FALSE. When TRUE, the "Complete" attribute signals that this "FDT Instance" includes the set of "File" entries that exhausts both the set of files delivered so far and the set of files to be delivered in the session. This implies that no new data will be provided in future FDT Instances within this session (i.e., that either FDT Instances with higher ID numbers will not be used or, if they are used, will only provide file parameters identical to those already given in this and previous FDT Instances). The "Complete" attribute is therefore used to provide a complete list of files in an entire FLUTE session (a "complete FDT"). Note that when all the FDT Instances received so far have no "Complete" attribute, the receiver MUST consider that the session is not complete and that new data MAY be provided in future FDT Instances. This is equivalent to receiving FDT Instances having the "Complete" attribute set to FALSE. The "FDT-Instance" element MAY contain attributes that give common parameters for all files of an FDT Instance. These attributes MAY also be provided for individual files in the "File" element. Where the same attribute appears in both the "FDT-Instance" and the "File" elements, the value of the attribute provided in the "File" element takes precedence. For each file to be declared in the given FDT Instance, there is a single file description entry in the FDT Instance. Each entry is represented by element "File", which is a child element of the FDT Instance structure. The attributes of the "File" element in the XML structure represent the attributes given to the file that is delivered in the file delivery session. The value of the XML attribute name corresponds to the MIME field name, and the XML attribute value corresponds to the value of the MIME field body [RFC2045]. Each "File" element MUST contain at least two attributes: "TOI" and "Content-Location". "TOI" MUST be assigned a valid TOI value as described in Section 3.3. "Content-Location" [RFC2616] MUST be assigned a syntactically valid URI, as defined in [RFC3986], which identifies the file to be delivered. For example, it can be a URI with the "http" or "file"
Top   ToC   RFC6726 - Page 18
   URI scheme.  Only one "Content-Location" attribute is allowed for
   each file.  The "Content-Location" field MUST be considered a string
   that identifies a file (i.e., two different strings are two different
   identifiers).  Any use of the "Content-Location" field for anything
   else other than to identify the object is out of scope of this
   specification.  The semantics for any two "File" elements declaring
   the same "Content-Location" but differing "TOI" is that the element
   appearing in the FDT Instance with the greater FDT Instance ID is
   considered to declare a newer instance (e.g., version) of the same
   "File".

   In addition to mandatory attributes, the "FDT-Instance" element and
   the "File" element MAY contain other attributes, of which the
   following are specifically pointed out:

   *  The attribute "Content-Type" SHOULD be included and, when present,
      MUST be used for the purpose defined in [RFC2616].

   *  Where the length is described, the attribute "Content-Length" MUST
      be used for the purpose defined in [RFC2616].  The transfer length
      is defined to be the length of the object transported in octets.
      It is often important to convey the transfer length to receivers,
      because the source block structure needs to be known for the FEC
      decoder to be applied to recover source blocks of the file, and
      the transfer length is often needed to properly determine the
      source block structure of the file.  There generally will be a
      difference between the length of the original file and the
      transfer length if content encoding is applied to the file before
      transport, and thus the "Content-Encoding" attribute is used.  If
      the file is not content encoded before transport (and thus the
      "Content-Encoding" attribute is not used), then the transfer
      length is the length of the original file, and in this case the
      "Content-Length" is also the transfer length.  However, if the
      file is content encoded before transport (and thus the
      "Content-Encoding" attribute is used), e.g., if compression is
      applied before transport to reduce the number of octets that need
      to be transferred, then the transfer length is generally different
      than the length of the original file, and in this case the
      attribute "Transfer-Length" MAY be used to carry the transfer
      length.

   *  Whenever content encoding is applied, the attribute
      "Content-Encoding" MUST be included.  Whenever the attribute
      "Content-Encoding" is included, it MUST be used as described in
      [RFC2616].
Top   ToC   RFC6726 - Page 19
   *  Where the MD5 message digest is described, the attribute
      "Content-MD5" MUST be used for the purpose defined in [RFC2616].
      Note that the goal is to provide a decoded object integrity
      service in cases where transmission and/or FLUTE/ALC processing
      errors may occur (the probability of collision is in that case
      negligible).  It MUST NOT be regarded as a security mechanism (see
      Section 7 for information regarding security measures).

   *  The FEC Object Transmission Information attributes are described
      in Section 5.

   The following specifies the XML Schema [XML-Schema-Part-1]
   [XML-Schema-Part-2] for the FDT Instance:

   BEGIN
   <?xml version="1.0" encoding="UTF-8"?>
   <xs:schema xmlns="urn:ietf:params:xml:ns:fdt"
              xmlns:xs="http://www.w3.org/2001/XMLSchema"
              targetNamespace="urn:ietf:params:xml:ns:fdt"
              elementFormDefault="qualified">
     <xs:element name="FDT-Instance" type="FDT-InstanceType"/>
     <xs:complexType name="FDT-InstanceType">
       <xs:sequence>
         <xs:element name="File" type="FileType" maxOccurs="unbounded"/>
         <xs:any namespace="##other" processContents="skip"
                 minOccurs="0" maxOccurs="unbounded"/>
       </xs:sequence>
       <xs:attribute name="Expires"
                     type="xs:string"
                     use="required"/>
       <xs:attribute name="Complete"
                     type="xs:boolean"
                     use="optional"/>
       <xs:attribute name="Content-Type"
                     type="xs:string"
                     use="optional"/>
       <xs:attribute name="Content-Encoding"
                     type="xs:string"
                     use="optional"/>
       <xs:attribute name="FEC-OTI-FEC-Encoding-ID"
                     type="xs:unsignedByte"
                     use="optional"/>
       <xs:attribute name="FEC-OTI-FEC-Instance-ID"
                     type="xs:unsignedLong"
                     use="optional"/>
       <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
                     type="xs:unsignedLong"
                     use="optional"/>
Top   ToC   RFC6726 - Page 20
       <xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
                     type="xs:unsignedLong"
                     use="optional"/>
       <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols"
                     type="xs:unsignedLong"
                     use="optional"/>
       <xs:attribute name="FEC-OTI-Scheme-Specific-Info"
                     type="xs:base64Binary"
                     use="optional"/>
       <xs:anyAttribute processContents="skip"/>
     </xs:complexType>
     <xs:complexType name="FileType">
       <xs:sequence>
         <xs:any namespace="##other" processContents="skip"
                 minOccurs="0" maxOccurs="unbounded"/>
       </xs:sequence>
       <xs:attribute name="Content-Location"
                     type="xs:anyURI"
                     use="required"/>
       <xs:attribute name="TOI"
                     type="xs:positiveInteger"
                     use="required"/>
       <xs:attribute name="Content-Length"
                     type="xs:unsignedLong"
                     use="optional"/>
       <xs:attribute name="Transfer-Length"
                     type="xs:unsignedLong"
                     use="optional"/>
       <xs:attribute name="Content-Type"
                     type="xs:string"
                     use="optional"/>
       <xs:attribute name="Content-Encoding"
                     type="xs:string"
                     use="optional"/>
       <xs:attribute name="Content-MD5"
                     type="xs:base64Binary"
                     use="optional"/>
       <xs:attribute name="FEC-OTI-FEC-Encoding-ID"
                     type="xs:unsignedByte"
                     use="optional"/>
       <xs:attribute name="FEC-OTI-FEC-Instance-ID"
                     type="xs:unsignedLong"
                     use="optional"/>
       <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length"
                     type="xs:unsignedLong"
                     use="optional"/>
Top   ToC   RFC6726 - Page 21
       <xs:attribute name="FEC-OTI-Encoding-Symbol-Length"
                     type="xs:unsignedLong"
                     use="optional"/>
       <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols"
                     type="xs:unsignedLong"
                     use="optional"/>
       <xs:attribute name="FEC-OTI-Scheme-Specific-Info"
                     type="xs:base64Binary"
                     use="optional"/>
       <xs:anyAttribute processContents="skip"/>
     </xs:complexType>
   </xs:schema>
   END

                 Figure 3: XML Schema for the FDT Instance

   Any valid FDT Instance MUST use the above XML Schema.  This way, FDT
   provides extensibility to support private elements and private
   attributes within the file description entries.  Those could be, for
   example, the attributes related to the delivery of the file (timing,
   packet transmission rate, etc.).  Unsupported private elements and
   attributes SHOULD be silently ignored by a FLUTE receiver.

   In case the basic FDT XML Schema is extended in terms of new
   descriptors (attributes or elements), for descriptors applying to a
   single file, those MUST be placed within the element "File".  For
   descriptors applying to all files described by the current FDT
   Instance, those MUST be placed within the element "FDT-Instance".  It
   is RECOMMENDED that the new attributes applied in the FDT be in the
   format of message header fields and be either defined in the HTTP/1.1
   specification [RFC2616] or another well-known specification, or in an
   IANA registry [IANAheaderfields].  However, this specification
   doesn't prohibit the use of other formats to allow private attributes
   to be used when interoperability is not a concern.

3.4.3. Content Encoding of FDT Instance

The FDT Instance itself MAY be content encoded (e.g., compressed). This specification defines the FDT Instance Content Encoding Header (EXT_CENC). EXT_CENC is a new fixed-length LCT Header Extension [RFC5651]. The Header Extension Type (HET) for the extension is 193. If the FDT Instance is content encoded, EXT_CENC MUST be used to signal the content encoding type. In that case, the EXT_CENC Header Extension MUST be used in all ALC packets carrying the same FDT Instance ID. Consequently, when the EXT_CENC header is used, it MUST be used together with a proper FDT Instance Header (EXT_FDT). Within a file delivery session, FDT Instances that are not content encoded and FDT Instances that are content encoded MAY both appear. If
Top   ToC   RFC6726 - Page 22
   content encoding is not used for a given FDT Instance, EXT_CENC MUST
   NOT be used in any packet carrying the FDT Instance.  The format of
   EXT_CENC is defined below:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   HET = 193   |     CENC      |          Reserved             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 4: EXT_CENC Format

   Content Encoding Algorithm (CENC), 8 bits:

   This field signals the content encoding algorithm used in the FDT
   Instance payload.  This subsection reserves the Content Encoding
   Algorithm values 0, 1, 2, and 3 for null, ZLIB [RFC1950], DEFLATE
   [RFC1951], and GZIP [RFC1952], respectively.

   Reserved, 16 bits:

   This field MUST be set to all '0's.  This field MUST be ignored on
   reception.

3.5. Multiplexing of Files within a File Delivery Session

The delivered files are carried as transmission objects (identified with TOIs) in the file delivery session. All these objects, including the FDT Instances, MAY be multiplexed in any order and in parallel with each other within a session; i.e., packets for one file may be interleaved with packets for other files or other FDT Instances within a session. Multiple FDT Instances MAY be delivered in a single session using TOI = 0. In this case, it is RECOMMENDED that the sending of a previous FDT Instance SHOULD end before the sending of the next FDT Instance starts. However, due to unexpected network conditions, packets for the FDT Instances might be interleaved. A receiver can determine which FDT Instance a packet contains information about, since the FDT Instances are uniquely identified by their FDT Instance ID carried in the EXT_FDT headers.


(next page on part 2)

Next Section