Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 5358

Preventing Use of Recursive Nameservers in Reflector Attacks

Pages: 7
Best Current Practice: 140

Top   ToC   RFC5358 - Page 1
Network Working Group                                           J. Damas
Request for Comments: 5358                                           ISC
BCP: 140                                                        F. Neves
Category: Best Current Practice                              Registro.br
                                                            October 2008


      Preventing Use of Recursive Nameservers in Reflector Attacks

Status of This Memo

   This document specifies an Internet Best Current Practices for the
   Internet Community, and requests discussion and suggestions for
   improvements.  Distribution of this memo is unlimited.

Abstract

This document describes ways to prevent the use of default configured recursive nameservers as reflectors in Denial of Service (DoS) attacks. It provides recommended configuration as measures to mitigate the attack.

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Document Terminology . . . . . . . . . . . . . . . . . . . . . 2 3. Problem Description . . . . . . . . . . . . . . . . . . . . . . 2 4. Recommended Configuration . . . . . . . . . . . . . . . . . . . 4 5. Security Considerations . . . . . . . . . . . . . . . . . . . . 5 6. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 5 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7.1. Normative References . . . . . . . . . . . . . . . . . . . 5 7.2. Informative References . . . . . . . . . . . . . . . . . . 6
Top   ToC   RFC5358 - Page 2

1. Introduction

Recently, DNS [RFC1034] has been named as a major factor in the generation of massive amounts of network traffic used in Denial of Service (DoS) attacks. These attacks, called reflector attacks, are not due to any particular flaw in the design of the DNS or its implementations, except that DNS relies heavily on UDP, the easy abuse of which is at the source of the problem. The attacks have preferentially used DNS due to common default configurations that allow for easy use of open recursive nameservers that make use of such a default configuration. In addition, due to the small query-large response potential of the DNS system, it is easy to yield great amplification of the source traffic as reflected traffic towards the victims. DNS authoritative servers that do not provide recursion to clients can also be used as amplifiers; however, the amplification potential is greatly reduced when authoritative servers are used. It is also impractical to restrict access to authoritative servers to a subset of the Internet, since their normal operation relies on them being able to serve a wide audience; hence, the opportunities to mitigate the scale of an attack by modifying authoritative server configurations are limited. This document's recommendations are concerned with recursive nameservers only. In this document we describe the characteristics of the attack and recommend DNS server configurations that specifically alleviate the problem described, while pointing to the only real solution: the wide-scale deployment of ingress filtering to prevent use of spoofed IP addresses [BCP38].

2. Document Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Problem Description

Because most DNS traffic is stateless by design, an attacker could start a DoS attack in the following way: 1. The attacker starts by configuring a record on any zone he has access to, normally with large RDATA and Time to Live (TTL).
Top   ToC   RFC5358 - Page 3
   2.  Taking advantage of clients on non-BCP38 networks, the attacker
       then crafts a query using the source address of their target
       victim and sends it to an open recursive nameserver.

   3.  Each open recursive nameserver proceeds with the resolution,
       caches the record, and finally sends it to the target.  After
       this first lookup, access to the authoritative nameservers is
       normally no longer necessary.  The record will remain cached at
       the open recursive nameserver for the duration of the TTL, even
       if it's deleted from the zone.

   4.  Cleanup of the zone might, depending on the implementation used
       in the open recursive nameserver, afford a way to clean the
       cached record from the open recursive nameserver.  This would
       possibly involve queries luring the open recursive nameserver to
       lookup information for the same name that is being used in the
       amplification.

   Because the characteristics of the attack normally involve a low
   volume of packets amongst all the kinds of actors besides the victim,
   it's unlikely any one of them would notice their involvement based on
   traffic pattern changes.

   Taking advantage of an open recursive nameserver that supports EDNS0
   [RFC2671], the amplification factor (response packet size / query
   packet size) could be around 80.  With this amplification factor, a
   relatively small army of clients and open recursive nameservers could
   generate gigabits of traffic towards the victim.

   With the increasing length of authoritative DNS responses derived
   from deployment of DNSSEC [RFC4033] and NAPTR resource records as
   used in ENUM services, authoritative servers will eventually be more
   useful as actors in this sort of amplification attack.

   Even if this amplification attack is only possible due to non-
   deployment of BCP38, it is easier to leverage because of historical
   reasons.  When the Internet was a much closer-knit community, some
   nameserver implementations were made available with default
   configurations that, when used for recursive nameservers, made the
   server accessible to all hosts on the Internet.

   For years this was a convenient and helpful configuration, enabling
   wider availability of services.  As this document aims to make
   apparent, it is now much better to be conscious of one's own
   nameserver services and focus the delivery of services on the
   intended audience of those services -- be they a university campus,
   an enterprise, or an ISP's customers.  The target audience also
   includes operators of small networks and private server managers who
Top   ToC   RFC5358 - Page 4
   decide to operate nameservers with the aim of optimising their DNS
   service, as these are more likely to use default configurations as
   shipped by implementors.

4. Recommended Configuration

In this section we describe the Best Current Practice for operating recursive nameservers. Following these recommendations would reduce the chances of any given recursive nameserver being used for the generation of an amplification attack. The generic recommendation to nameserver operators is to use the means provided by the implementation of choice to provide recursive name lookup service to only the intended clients. Client authorization can usually be done in several ways: o IP address based authorization. Use the IP source address of the DNS queries and filter them through an Access Control List (ACL) to service only the intended clients. This is easily applied if the recursive nameserver's service area is a reasonably fixed IP address range that is protected against external address spoofing, usually the local network. o Incoming interface based selection. Use the incoming interface for the query as a discriminator to select which clients are to be served. This is of particular applicability for SOHO (Small Office, Home Office) devices, such as broadband routers that include embedded recursive nameservers. o TSIG [RFC2845] or SIG(0) [RFC2931] signed queries to authenticate the clients. This is a less error prone method that allows server operators to provide service to clients who change IP address frequently (e.g., roaming clients). The current drawback of this method is that very few stub resolver implementations support TSIG or SIG(0) signing of outgoing queries. The effective use of this method implies, in most cases, running a local instance of a caching nameserver or forwarder that will be able to TSIG sign the queries and send them on to the recursive nameserver of choice. o For mobile users, use a local caching nameserver running on the mobile device or use a Virtual Private Network to a trusted server. In nameservers that do not need to be providing recursive service, for instance servers that are meant to be authoritative only, turn recursion off completely. In general, it is a good idea to keep recursive and authoritative services separate as much as practical. This, of course, depends on local circumstances.
Top   ToC   RFC5358 - Page 5
   Even with all these recommendations, network operators should
   consider deployment of ingress filtering [BCP38] in routers to
   prevent use of address spoofing as a viable course of action.  In
   situations where more complex network setups are in place, "Ingress
   Filtering for Multihomed Network" [BCP84] maybe a useful additional
   reference.

   By default, nameservers SHOULD NOT offer recursive service to
   external networks.

5. Security Considerations

This document does not create any new security issues for the DNS protocol, it deals with a weakness in implementations. Deployment of SIG(0) transaction security [RFC2931] should consider the caveats with SIG(0) computational expense as it uses public key cryptography rather than the symmetric keys used by TSIG [RFC2845]. In addition, the identification of the appropriate keys needs similar mechanisms as those for deploying TSIG or, alternatively, the use of DNSSEC [RFC4033] signatures (RRSIGs) over the KEY RRs if published in DNS. This will in turn require the appropriate management of DNSSEC trust anchors.

6. Acknowledgments

The authors would like to acknowledge the helpful input and comments of Joe Abley, Olafur Gudmundsson, Pekka Savola, Andrew Sullivan, and Tim Polk.

7. References

7.1. Normative References

[RFC1034] Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, November 1987. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)", RFC 2671, August 1999. [RFC2845] Vixie, P., Gudmundsson, O., Eastlake, D., and B. Wellington, "Secret Key Transaction Authentication for DNS (TSIG)", RFC 2845, May 2000.
Top   ToC   RFC5358 - Page 6
   [RFC2931]  Eastlake, D., "DNS Request and Transaction Signatures
              (SIG(0)s)", RFC 2931, September 2000.

   [RFC4033]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "DNS Security Introduction and Requirements",
              RFC 4033, March 2005.

7.2. Informative References

[BCP38] Ferguson, P. and D. Senie, "Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing", BCP 38, RFC 2827, May 2000. [BCP84] Baker, F. and P. Savola, "Ingress Filtering for Multihomed Networks", BCP 84, RFC 3704, March 2004.

Authors' Addresses

Joao Damas Internet Systems Consortium, Inc. 950 Charter Street Redwood City, CA 94063 US Phone: +1 650 423 1300 EMail: Joao_Damas@isc.org URI: http://www.isc.org/ Frederico A. C. Neves NIC.br / Registro.br Av. das Nacoes Unidas, 11541, 7 Sao Paulo, SP 04578-000 BR Phone: +55 11 5509 3511 EMail: fneves@registro.br URI: http://registro.br/
Top   ToC   RFC5358 - Page 7
Full Copyright Statement

   Copyright (C) The IETF Trust (2008).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.