Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 4833

Timezone Options for DHCP

Pages: 10
Proposed Standard
Updates:  2132

ToP   noToC   RFC4833 - Page 1
Network Working Group                                            E. Lear
Request for Comments: 4833                            Cisco Systems GmbH
Updates: 2132                                                  P. Eggert
Category: Standards Track                                           UCLA
                                                              April 2007


                       Timezone Options for DHCP

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The IETF Trust (2007).

Abstract

Two common ways to communicate timezone information are POSIX 1003.1 timezone strings and timezone database names. This memo specifies DHCP options for each of those methods. The DHCPv4 time offset option is deprecated.
ToP   noToC   RFC4833 - Page 2

1. Introduction

This memo specifies a means to provide hosts with more accurate timezone information than was previously available. To do this we make use of two commonly used methods to configure timezones: o POSIX TZ strings o Reference to the name of the time zone entry in the TZ Database POSIX [1] provides a standard for how to express timezone information in a character string. Use of such a string can provide accuracy for at least one transition into and out of daylight saving time (DST), and possibly for more transitions if the transitions are regular enough (e.g., "second Sunday in March at 02:00 local time"). However, for accuracy over longer periods that involve daylight- saving rule changes or other irregular changes, a more detailed mechanism is necessary. The TZ Database [7] that is used in many operating systems provides backwards consistency and accuracy for almost all real-world locations since 1970. The TZ database also attempts to provide a stable set of human readable timezone identifiers. In addition, many systems already make use of the TZ database, and so the names used are a de facto standard. Because the TZ database contains more information, one can heuristically derive the POSIX information from a TZ identifier (see [10] for an example), but the converse is not true. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [2].

1.1. Related Work

Dynamic Host Configuration Protocol (DHCP) [3] provides a means for hosts to receive configuration information relating to their current location within an IP version 4 network. [5] similarly does so for IP version 6 networks. RFC 2132 [4] specifies an option to provide client timezone information in the form of an offset in seconds from UTC. The information provided in that option is insufficient for the client to determine whether it is in daylight saving time, and when to change into and out of daylight saving time. In order for the client to properly represent local wall clock time in a consistent and accurate fashion the DHCP server would have to time lease expirations of affected clients to the beginning or end of DST, thus effecting a self stress test (to say the least) at the appointed hour.
ToP   noToC   RFC4833 - Page 3
   In addition, an offset is not sufficient to determine the actual
   timezone in which a client resides, and thus there is no means to
   derive a human readable abbreviation such as "EST" or "EDT".

   VTIMEZONE elements are defined in the iCalendar specification [9].
   Fully specified they provide a level of accuracy similar to the TZ
   database.  However, because there is currently no global registry of
   VTIMEZONE TZIDs (although one has been proposed; see [8]), complete
   accuracy requires that a full entry must be specified.  To achieve
   the same information would range from 300 octets upwards with no
   particular bound.  Furthermore, at the time of this writing the
   authors are aware of no operating system that natively takes
   advantage of VTIMEZONE entries.  It might be possible to include an
   option for a TZURL.  However, in a cold start environment, it will be
   bad enough that devices are stressing the DHCP server, and perhaps
   unwise to similarly afflict other components.

2. New Timezone Options for DHCPv4

The following two options are defined for DHCPv4: PCode Len TZ-POSIX String +-----+-----+------------------------------+ | 100 | N | IEEE 1003.1 String | +-----+-----+------------------------------+ TCode Len TZ-Database String +-----+-----+------------------------------+ | 101 | N | Reference to the TZ Database | +-----+-----+------------------------------+ Per RFC 2939 [6], IANA allocated PCode (100) and TCode (101). Len is the one-octet value of the length of the succeeding string for each option. The string values that follow Len are described below. Note that they are NOT terminated by an ASCII NULL.

3. New Timezone Options for DHCPv6

The semantics and content of the DHCPv6 encoding of these options are exactly the same as the encoding described for DHCPv4, other than necessary differences between the way options are encoded in DHCPv4 and DHCPv6.
ToP   noToC   RFC4833 - Page 4
   Specifically, the DHCPv6 new timezone options are described below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OPTION_NEW_POSIX_TIMEZONE    |         option-length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      TZ POSIX String                          |
      |                              ...                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   option-code: OPTION_NEW_POSIX_TIMEZONE(41)

   option-length: the number of octets of the TZ POSIX String Index
   described below.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OPTION_NEW_TZDB_TIMEZONE    |          option-length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          TZ Name                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   option-code: OPTION_NEW_TZDB_TIMEZONE(42)

   option-length: the number of octets of the TZ Database String Index
   described below.

4. The TZ POSIX String

TZ POSIX string is a string suitable for the TZ variable as specified by [1] in Section 8.3, with the exception that a string may not begin with a colon (":"). This string is NOT terminated by an ASCII NULL. Here is an example: EST5EDT4,M3.2.0/02:00,M11.1.0/02:00 In this case, the string is interpreted as a timezone that is normally five hours behind UTC, and four hours behind UTC during DST, which runs from the second Sunday in March at 02:00 local time through the first Sunday in November at 02:00 local time. Normally the timezone is abbreviated "EST" but during DST it is abbreviated "EDT". Clients and servers implementing other timezone options MUST support this option for basic compatibility.
ToP   noToC   RFC4833 - Page 5

5. The TZ Name

TZ Name is the name of a Zone entry in the database commonly referred to as the TZ database. Specifically, in the database's textual form, the string refers to the name field of a zone line. In order for this option to be useful, the client must already have a copy of the database. This string is NOT terminated with an ASCII NULL. An example string is Europe/Zurich. Clients must already have a copy of the TZ Database for this option to be useful. Configuration of the database is beyond the scope of this document. A client that supports this option SHOULD prefer this option to POSIX string if it recognizes the TZ Name that was returned. If it doesn't recognize the TZ Name, the client MUST ignore this option.

6. Use of the Timezone String(s) Returned from the Server

This specification presumes the DHCP server has some means of identifying which timezone the client is in. One obvious approach would be to associate a subnet or group of subnets with a timezone, and respond with this option accordingly. When considering which option to implement on a client, one must choose between the TZ Name, which should be easier for users to configure and which provides accuracy over longer historical periods, and the TZ POSIX string, which does not require regular updating of a copy of the TZ Database. The TZ Name is better for most uses, in particular those cases where the timezone name might persist in a database for long periods of time, but the TZ POSIX string may be more suitable for small-footprint applications that are expertly maintained. So that clients need not request both options, servers who implement either timezone option SHOULD implement the other one as well. This association can be established by the server's administrator. A basic server can transmit option values to the client without parsing or validating them. A more advanced server might have a copy of the TZ database and validate TZ names against this copy, or derive TZ POSIX strings heuristically from TZ names to simplify administration. As a matter of practicality, the client will use this information at its discretion to configure the current timezone in which it resides. It will periodically be necessary for a DHCP server to update the timezone string, based on administrative changes made by local jurisdictions (say, for instance, counties in Indiana). While the
ToP   noToC   RFC4833 - Page 6
   authors do not expect this to be a lower bound on a lease time in the
   vast majority of cases, there may be times when anticipation of a
   change dictates prudence, as certain governments give little if any
   notification.

   The effect of a changed timezone on client applications is not
   specified by this memo, but it may be helpful to note common problems
   in this area.  Often, client applications consult the timezone
   setting only during process initialization, or inherit the setting
   from a parent process, so existing processes on a client may ignore a
   timezone change returned from the server.  Sometimes it is normal and
   expected for processes on the same client to have different timezone
   settings (e.g., remote logins), and so client implementations should
   consider these ramifications of changing timezone settings of
   existing processes.

7. The New Timezone Option and Lease Times

When a lease has expired and new information is not forthcoming, the client MAY continue to use timezone information returned by the server. This follows the principle of least astonishment.

8. Deprecation of Time Offset Option

Because this option provides a superset of functionality to the previous IPv4 time offset option (tag 2), and in order to maintain consistency between IPv4 and IPv6 implementation, the older option is deprecated. Current implementations that support the time offset IPv4 option SHOULD implement this option also. Other implementations SHOULD implement this option, and SHOULD NOT implement the time offset IPv4 option. As a matter of transition, clients that already use the time offset option MAY request the time offset option and the timezone option.

9. Security Considerations

An attacker could provide erroneous information to a client. It is possible that someone might miss a meeting or otherwise show up early, or that heavy machinery or other critical functions might act at the wrong time or fail to act. If clients have job processing tools, such as cron that operate on wall clock time, it is possible that certain jobs could be triggered either earlier or later, or even repeated or skipped entirely if scheduled during a DST transition. In such cases, the client operating system might do well to confirm timezone changes with a human.
ToP   noToC   RFC4833 - Page 7
   Clients using the POSIX option should beware of any time zone setting
   specifying unusual characters (e.g., control characters) in the
   standard or daylight-saving abbreviations, as this might well trigger
   security-relevant bugs in applications.

   Clients using the POSIX option should also be suspicious of any
   timezone setting whose UTC offset exceeds 25 hours (the POSIX limit,
   if the default daylight-saving offset is used).  As of this writing,
   the maximum UTC offset is 14 hours in practice, but governments may
   extend this somewhat in the future.

10. IANA Considerations

The IANA has allocated DHCPv4 and DHCPv6 option codes for this purpose and references this document. The IANA has annotated the time offset IPv4 option (tag 2) as deprecated, with a reference to this document.

11. Acknowledgments

This document specifies a means to exchange timezone information. The hard part is actually collecting changes to the various databases from scattered sources around the world. The many volunteers on the mailing list tz@elsie.nci.nih.gov have done this nearly thankless task for many years. Thanks also go to Ralph Droms, Bernie Volz, Ted Lemon, Lisa Dusseault, John Hawkinson, Stig Venaas, and Simon Vaillancourt for their efforts to improve this work.
ToP   noToC   RFC4833 - Page 8

12. References

12.1. Normative References

[1] "Standard for Information Technology - Portable Operating System Interface (POSIX) - Base Definitions", IEEE Std 1003.1-2004, December 2004. [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [3] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, March 1997. [4] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor Extensions", RFC 2132, March 1997. [5] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003. [6] Droms, R., "Procedures and IANA Guidelines for Definition of New DHCP Options and Message Types", BCP 43, RFC 2939, September 2000. [7] Eggert, P. and A. Olson, "Sources for Time Zone and Daylight Saving Time Data", <http://www.twinsun.com/tz/tz-link.htm>.

12.2. Informational References

[8] Vaillancourt, S., "Calconnect.org TC Timezone Technical Committee: Timezone Registry and Service Recommendations", April 2006. [9] Dawson, F. and Stenerson, D., "Internet Calendaring and Scheduling Core Object Specification (iCalendar)", RFC 2445, November 1998. [10] Eggert, P. and E. Reingold, "cal-dst.el --- calendar functions for daylight savings rules", <http://cvs.savannah.gnu.org/ viewcvs/*checkout*/emacs/lisp/calendar/cal-dst.el?root=emacs>.
ToP   noToC   RFC4833 - Page 9

Authors' Addresses

Eliot Lear Cisco Systems GmbH Glatt-com Glattzentrum, ZH CH-8301 Switzerland Phone: +41 1 878 9200 EMail: lear@cisco.com Paul Eggert UCLA Computer Science Department 4532J Boelter Hall Los Angeles, CA 90095 USA Phone: +1 310 825 3886 EMail: eggert@cs.ucla.edu
ToP   noToC   RFC4833 - Page 10
Full Copyright Statement

   Copyright (C) The IETF Trust (2007).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.