Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 4258

Requirements for Generalized Multi-Protocol Label Switching (GMPLS) Routing for the Automatically Switched Optical Network (ASON)

Pages: 22
Informational

Top   ToC   RFC4258 - Page 1
Network Working Group                                   D. Brungard, Ed.
Request for Comments: 4258                                           ATT
Category: Informational                                    November 2005


  Requirements for Generalized Multi-Protocol Label Switching (GMPLS)
     Routing for the Automatically Switched Optical Network (ASON)

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2005).

Abstract

The Generalized Multi-Protocol Label Switching (GMPLS) suite of protocols has been defined to control different switching technologies as well as different applications. These include support for requesting Time Division Multiplexing (TDM) connections including Synchronous Optical Network (SONET)/Synchronous Digital Hierarchy (SDH) and Optical Transport Networks (OTNs). This document concentrates on the routing requirements placed on the GMPLS suite of protocols in order to support the capabilities and functionalities of an Automatically Switched Optical Network (ASON) as defined by the ITU-T.
Top   ToC   RFC4258 - Page 2

Table of Contents

1. Introduction ....................................................2 2. Conventions Used in This Document ...............................4 3. ASON Routing Architecture and Requirements ......................4 3.1. Multiple Hierarchical Levels of ASON Routing Areas (RAs) ...5 3.2. Hierarchical Routing Information Dissemination .............6 3.3. Configuration ..............................................8 3.3.1. Configuring the Multi-Level Hierarchy ...............8 3.3.2. Configuring RC Adjacencies ..........................8 3.4. Evolution ..................................................8 3.5. Routing Attributes .........................................8 3.5.1. Taxonomy of Routing Attributes ......................9 3.5.2. Commonly Advertised Information .....................9 3.5.3. Node Attributes ....................................10 3.5.4. Link Attributes ....................................11 4. Security Considerations ........................................12 5. Conclusions ....................................................12 6. Contributors ...................................................15 7. Acknowledgements ...............................................15 8. References .....................................................16 8.1. Normative References ......................................16 8.2. Informative References ....................................16

1. Introduction

The Generalized Multi-Protocol Label Switching (GMPLS) suite of protocols provides, among other capabilities, support for controlling different switching technologies. These include support for requesting TDM connections utilizing SONET/SDH (see [T1.105] and [G.707], respectively) as well as Optical Transport Networks (OTNs, see [G.709]). However, there are certain capabilities that are needed to support the ITU-T G.8080 control plane architecture for an Automatically Switched Optical Network (ASON). Therefore, it is desirable to understand the corresponding requirements for the GMPLS protocol suite. The ASON control plane architecture is defined in [G.8080]; ASON routing requirements are identified in [G.7715] and in [G.7715.1] for ASON link state protocols. These Recommendations apply to all [G.805] layer networks (e.g., SDH and OTN), and provide protocol-neutral functional requirements and architecture. This document focuses on the routing requirements for the GMPLS suite of protocols to support the capabilities and functionality of ASON control planes. This document summarizes the ASON requirements using ASON terminology. This document does not address GMPLS applicability or GMPLS capabilities. Any protocol (in particular, routing)
Top   ToC   RFC4258 - Page 3
   applicability, design, or suggested extensions are strictly outside
   the scope of this document.  ASON (Routing) terminology sections are
   provided in Appendixes 1 and 2.

   The ASON routing architecture is based on the following assumptions:

   -  A network is subdivided based on operator decision and criteria
      (e.g., geography, administration, and/or technology); the network
      subdivisions are defined in ASON as Routing Areas (RAs).

   -  The routing architecture and protocols applied after the network
      is subdivided are an operator's choice.  A multi-level hierarchy
      of RAs, as defined in ITU-T [G.7715] and [G.7715.1], provides for
      a hierarchical relationship of RAs based on containment; i.e.,
      child RAs are always contained within a parent RA.  The
      hierarchical containment relationship of RAs provides for routing
      information abstraction, thereby enabling scalable routing
      information representation.  The maximum number of hierarchical RA
      levels to be supported is not specified (outside the scope of this
      document).

   -  Within an ASON RA and for each level of the routing hierarchy,
      multiple routing paradigms (hierarchical, step-by-step, source-
      based), centralized or distributed path computation, and multiple
      different routing protocols MAY be supported.  The architecture
      does not assume a one-to-one correspondence between a routing
      protocol and an RA level, and allows the routing protocol(s) used
      within different RAs (including child and parent RAs) to be
      different.  The realization of the routing paradigm(s) to support
      the hierarchical levels of RAs is not specified.

   -  The routing adjacency topology (i.e., the associated Protocol
      Controller (PC) connectivity) and transport topology are NOT
      assumed to be congruent.

   -  The requirements support architectural evolution, e.g., a change
      in the number of RA levels, as well as aggregation and
      segmentation of RAs.

   The description of the ASON routing architecture provides for a
   conceptual reference architecture, with definition of functional
   components and common information elements to enable end-to-end
   routing in the case of protocol heterogeneity and facilitate
   management of ASON networks.  This description is only conceptual: no
   physical partitioning of these functions is implied.
Top   ToC   RFC4258 - Page 4

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. Although [RFC2119] describes interpretations of these key words in terms of protocol specifications and implementations, they are used in this document to describe design requirements for protocol extensions.

3. ASON Routing Architecture and Requirements

The fundamental architectural concept is the RA and its related functional components (see Appendix 2 on terminology). The routing services offered by an RA are provided by a Routing Performer (RP). An RP is responsible for a single RA, and it MAY be functionally realized using distributed Routing Controllers (RCs). The RC, itself, MAY be implemented as a cluster of distributed entities (ASON refers to the cluster as a Routing Control Domain (RCD)). The RC components for an RA receive routing topology information from their associated Link Resource Manager(s) (LRMs) and store this information in the Routing Information Database (RDB). The RDB is replicated at each RC bounded to the same RA, and MAY contain information about multiple transport plane network layers. Whenever the routing topology changes, the LRM informs the corresponding RC, which in turn updates its associated RDB. In order to ensure RDB synchronization, the RCs cooperate and exchange routing information. Path computation functions MAY exist in each RC, MAY exist on selected RCs within the same RA, or MAY be centralized for the RA. In this context, communication between RCs within the same RA is realized using a particular routing protocol (or multiple protocols). In ASON, the communication component is represented by the protocol controller (PC) component(s) and the protocol messages are conveyed over the ASON control plane's Signaling Control Network (SCN). The PC MAY convey information for one or more transport network layers (refer to the note in Section 3.2). The RC is protocol independent, and RC communications MAY be realized by multiple, different PCs within an RA. The ASON routing architecture defines a multi-level routing hierarchy of RAs based on a containment model to support routing information abstraction. [G.7715.1] defines the ASON hierarchical link state routing protocol requirements for communication of routing information within an RA (one level) to support hierarchical routing information dissemination (including summarized routing information
Top   ToC   RFC4258 - Page 5
   for other levels).  The communication between any of the other
   functional component(s) (e.g., SCN, LRM, and between RCDs (RC-RC
   communication between RAs)) is outside the scope of [G.7715.1]
   protocol requirements and, thus, is also outside the scope of this
   document.

   ASON routing components are identified by identifiers that are drawn
   from different name spaces (see [G.7715.1]).  These are control plane
   identifiers for transport resources, components, and SCN addresses.
   The formats of those identifiers in a routing protocol realization
   SHALL be implementation specific and outside the scope of this
   document.

   The failure of an RC, or the failure of communications between RCs,
   and the subsequent recovery from the failure condition MUST NOT
   disrupt calls in progress (i.e., already established) and their
   associated connections.  Calls being set up MAY fail to complete, and
   the call setup service MAY be unavailable during recovery actions.

3.1. Multiple Hierarchical Levels of ASON Routing Areas (RAs)

[G.8080] introduces the concept of a Routing Area (RA) in reference to a network subdivision. RAs provide for routing information abstraction. Except for the single RA case, RAs are hierarchically contained: a higher-level (parent) RA contains lower-level (child) RAs that in turn MAY also contain RAs, etc. Thus, RAs contain RAs that recursively define successive hierarchical RA levels. However, the RA containment relationship describes only an architectural hierarchical organization of RAs. It does not restrict a specific routing protocol's realization (e.g., OSPF multi-areas, path computation, etc.). Moreover, the realization of the routing paradigm to support a hierarchical organization of RAs and the number of hierarchical RA levels to be supported is routing protocol specific and outside the scope of this document. In a multi-level hierarchy of RAs, it is necessary to distinguish among RCs for the different levels of the RA hierarchy. Before any pair of RCs establishes communication, they MUST verify that they are bound to the same parent RA (see Section 3.2). An RA identifier (RA ID) is required to provide the scope within which the RCs can communicate. To distinguish between RCs bound to the same RA, an RC identifier (RC ID) is required; the RC ID MUST be unique within its containing RA. An RA represents a partition of the data plane, and its identifier (i.e., RA ID) is used within the control plane as a reference to the data plane partition. Each RA within a carrier's network SHALL be
Top   ToC   RFC4258 - Page 6
   uniquely identifiable.  RA IDs MAY be associated with a transport
   plane name space, whereas RC IDs are associated with a control plane
   name space.

3.2. Hierarchical Routing Information Dissemination

Routing information can be exchanged between RCs bound to adjacent levels of the RA hierarchy, i.e., Level N+1 and N, where Level N represents the RAs contained by Level N+1. The links connecting RAs may be viewed as external links (inter-RA links), and the links representing connectivity within an RA may be viewed as internal links (intra-RA links). The external links to an RA at one level of the hierarchy may be internal links in the parent RA. Intra-RA links of a child RA MAY be hidden from the parent RA's view. The physical location of RCs for adjacent RA levels, their relationship, and their communication protocol(s) are outside the scope of this document. No assumption is made regarding how RCs communicate between adjacent RA levels. If routing information is exchanged between an RC, its parent, and its child RCs, it SHOULD include reachability (see Section 3.5.3) and MAY include, upon policy decision, node and link topology. Communication between RAs only takes place between RCs with a parent/child relationship. RCs of one RA never communicate with RCs of another RA at the same level. There SHOULD not be any dependencies on the different routing protocols used within an RA or in different RAs. Multiple RCs bound to the same RA MAY transform (filter, summarize, etc.) and then forward information to RCs at different levels. However, in this case, the resulting information at the receiving level must be self-consistent (i.e., ensure consistency between transform operations performed on routing information at different levels to ensure proper information processing). This MAY be achieved using a number of mechanisms. Note: There is no implied relationship between multi-layer transport networks and multi-level routing. Implementations MAY support a hierarchical routing topology (multi-level) with a single routing protocol instance for multiple transport switching layers or a hierarchical routing topology for one transport switching layer. 1. Type of Information Exchanged The type of information flowing upward (i.e., Level N to Level N+1) and the information flowing downward (i.e., Level N+1 to Level N) are used for similar purposes, namely, the exchange of reachability information and summarized topology information to
Top   ToC   RFC4258 - Page 7
      allow routing across multiple RAs.  The summarization of topology
      information may impact the accuracy of routing and may require
      additional path calculation.

      The following information exchanges are expected:

      -  Level N+1 visibility to Level N reachability and topology (or
         upward information communication) allowing RC(s) at Level N+1
         to determine the reachable endpoints from Level N.

      -  Level N visibility to Level N+1 reachability and topology (or
         downward information communication) allowing RC(s) bounded to
         an RA at Level N to develop paths to reachable endpoints
         outside of the RA.

   2. Interactions between Upward and Downward Communication

      When both upward and downward information exchanges contain
      endpoint reachability information, a feedback loop could
      potentially be created.  Consequently, the routing protocol MUST
      include a method to:

      -  prevent information propagated from a Level N+1 RA's RC into
         the Level N RA's RC from being re-introduced into the Level N+1
         RA's RC, and

      -  prevent information propagated from a Level N-1 RA's RC into
         the Level N RA's RC from being re-introduced into the Level N-1
         RA's RC.

      The routing protocol SHALL differentiate the routing information
      originated at a given-level RA from derived routing information
      (received from external RAs), even when this information is
      forwarded by another RC at the same level.  This is a necessary
      condition to be fulfilled by routing protocols to be loop free.

   3. Method of Communication

      Two approaches exist for communication between Level N and N+1:

      -  The first approach places an instance of a Level N routing
         function and an instance of a Level N+1 routing function in the
         same system.  The communications interface is within a single
         system and is thus not an open interface subject to
         standardization.  However, information re-advertisement or
         leaking MUST be performed in a consistent manner to ensure
         interoperability and basic routing protocol correctness (e.g.,
         cost/metric value).
Top   ToC   RFC4258 - Page 8
      -  The second approach places the Level N routing function on a
         separate system from the Level N+1 routing function.  In this
         case, a communication interface must be used between the
         systems containing the routing functions for different levels.
         This communication interface and mechanisms are outside the
         scope of this document.

3.3. Configuration

3.3.1. Configuring the Multi-Level Hierarchy

The RC MUST support static (i.e., operator assisted) and MAY support automated configuration of the information describing its relationship to its parent and its child within the hierarchical structure (including RA ID and RC ID). When applied recursively, the whole hierarchy is thus configured.

3.3.2. Configuring RC Adjacencies

The RC MUST support static (i.e., operator assisted) and MAY support automated configuration of the information describing its associated adjacencies to other RCs within an RA. The routing protocol SHOULD support all the types of RC adjacencies described in Section 9 of [G.7715]. The latter includes congruent topology (with distributed RC) and hubbed topology (e.g., note that the latter does not automatically imply a designated RC).

3.4. Evolution

The containment relationships of RAs may change, motivated by events such as mergers, acquisitions, and divestitures. The routing protocol SHOULD be capable of supporting architectural evolution in terms of the number of hierarchical levels of RAs, as well as the aggregation and segmentation of RAs. RA ID uniqueness within an administrative domain may facilitate these operations. The routing protocol is not expected to automatically initiate and/or execute these operations. Reconfiguration of the RA hierarchy may not disrupt calls in progress, though calls being set up may fail to complete, and the call setup service may be unavailable during reconfiguration actions.

3.5. Routing Attributes

Routing for transport networks is performed on a per-layer basis, where the routing paradigms MAY differ among layers and within a layer. Not all equipment supports the same set of transport layers or the same degree of connection flexibility at any given layer. A
Top   ToC   RFC4258 - Page 9
   server layer trail may support various clients, involving different
   adaptation functions.  In addition, equipment may support variable
   adaptation functionality, whereby a single server layer trail
   dynamically supports different multiplexing structures.  As a result,
   routing information MAY include layer-specific, layer-independent,
   and client/server adaptation information.

3.5.1. Taxonomy of Routing Attributes

Attributes can be organized according to the following categories: - Node related or link related - Provisioned, negotiated, or automatically configured - Inherited or layer specific (client layers can inherit some attributes from the server layer, while other attributes such as Link Capacity are specified by layer) (Component) link attributes MAY be statically or automatically configured for each transport network layer. This may lead to unnecessary repetition. Hence, the inheritance property of attributes MAY also be used to optimize the configuration process. ASON uses the term SubNetwork Point (SNP) for the control plane representation of a transport plane resource. The control plane representation and transport plane topology are NOT assumed to be congruent; the control plane representation SHALL not be restricted by the physical topology. The relational grouping of SNPs for routing is termed an SNP Pool (SNPP). The routing function understands topology in terms of SNPP links. Grouping MAY be based on different link attributes (e.g., SRLG information, link weight, etc). Two RAs may be linked by one or more SNPP links. Multiple SNPP links may be required when component links are not equivalent for routing purposes with respect to the RAs to which they are attached, to the containing RA, or when smaller groupings are required.

3.5.2. Commonly Advertised Information

Advertisements MAY contain the following common set of information regardless of whether they are link or node related: - RA ID of the RA to which the advertisement is bounded - RC ID of the entity generating the advertisement
Top   ToC   RFC4258 - Page 10
   -  Information to uniquely identify advertisements

   -  Information to determine whether an advertisement has been updated

   -  Information to indicate when an advertisement has been derived
      from a different level RA

3.5.3. Node Attributes

All nodes belong to an RA; hence, the RA ID can be considered an attribute of all nodes. Given that no distinction is made between abstract nodes and those that cannot be decomposed any further, the same attributes MAY be used for their advertisement. In the following tables, Capability refers to the level of support required in the realization of a link state routing protocol, whereas Usage refers to the degree of operational control that SHOULD be available to the operator. The following Node Attributes are defined: Attribute Capability Usage ----------- ----------- --------- Node ID REQUIRED REQUIRED Reachability REQUIRED OPTIONAL Table 1. Node Attributes Reachability information describes the set of endpoints that are reachable by the associated node. It MAY be advertised as a set of associated external (e.g., User Network Interface (UNI)) address/address prefixes or a set of associated SNPP link IDs/SNPP ID prefixes, the selection of which MUST be consistent within the applicable scope. These are control plane identifiers; the formats of these identifiers in a protocol realization are implementation specific and outside the scope of this document. Note: No distinction is made between nodes that may have further internal details (i.e., abstract nodes) and those that cannot be decomposed any further. Hence, the attributes of a node are not considered as only single-switch attributes but MAY apply to a node at a higher level of the hierarchy that represents a subnetwork.
Top   ToC   RFC4258 - Page 11

3.5.4. Link Attributes

The following Link Attributes are defined: Link Attribute Capability Usage --------------- ----------- --------- Local SNPP link ID REQUIRED REQUIRED Remote SNPP link ID REQUIRED REQUIRED Layer Specific Characteristics see Table 3 Table 2. Link Attributes The SNPP link ID MUST be sufficient to uniquely identify (within the Node ID scope) the corresponding transport plane resource, taking into account the separation of data and control planes (see Section 3.5.1; the control plane representation and transport plane topology are not assumed to be congruent). The SNPP link ID format is routing protocol specific. Note: When the remote end of an SNPP link is located outside of the RA, the remote SNPP link ID is OPTIONAL. The following link characteristic attributes are defined: - Signal Type: This identifies the characteristic information of the layer network. - Link Weight: This is the metric indicating the relative desirability of a particular link over another, e.g., during path computation. - Resource Class: This corresponds to the set of administrative groups assigned by the operator to this link. A link MAY belong to zero, one, or more administrative groups. - Local Connection Types: This attribute identifies whether the local SNP represents a Termination Connection Point (CP), a Connection Point (CP), or can be flexibly configured as a TCP. - Link Capacity: This provides the sum of the available and potential bandwidth capacity for a particular network transport layer. Other capacity measures MAY be further considered. - Link Availability: This represents the survivability capability such as the protection type associated with the link. - Diversity Support: This represents diversity information such as the SRLG information associated with the link.
Top   ToC   RFC4258 - Page 12
   -  Local Adaptation Support: This indicates the set of client layer
      adaptations supported by the TCP associated with the local SNPP.
      This is applicable only when the local SNP represents a TCP or can
      be flexibly configured as a TCP.

      Link Characteristics            Capability      Usage
      -----------------------         ----------      ---------
      Signal Type                     REQUIRED        OPTIONAL
      Link Weight                     REQUIRED        OPTIONAL
      Resource Class                  REQUIRED        OPTIONAL
      Local Connection Types          REQUIRED        OPTIONAL
      Link Capacity                   REQUIRED        OPTIONAL
      Link Availability               OPTIONAL        OPTIONAL
      Diversity Support               OPTIONAL        OPTIONAL
      Local Adaptation Support        OPTIONAL        OPTIONAL

                     Table 3. Link Characteristics

   Note: Separate advertisements of layer-specific attributes MAY be
   chosen.  However, this may lead to unnecessary duplication.  This can
   be avoided using the inheritance property, so that the attributes
   derivable from the local adaptation information do not need to be
   advertised.  Thus, an optimization MAY be used when several layers
   are present by indicating when an attribute is inheritable from a
   server layer.

4. Security Considerations

The ASON routing protocol MUST deliver the operational security objectives where required. The overall security objectives (defined in ITU-T Recommendation [M.3016]) of confidentiality, integrity, and accountability may take on varying levels of importance. These objectives do not necessarily imply requirements on the routing protocol itself, and MAY be met by other established means. Note: A threat analysis of a proposed routing protocol SHOULD address masquerade, eavesdropping, unauthorized access, loss or corruption of information (including replay attacks), repudiation, forgery, and denial of service attacks.

5. Conclusions

The description of the ASON routing architecture and components is provided in terms of routing functionality. This description is only conceptual: no physical partitioning of these functions is implied.
Top   ToC   RFC4258 - Page 13
   In summary, the ASON routing architecture assumes:

   -  A network is subdivided into ASON RAs, which MAY support multiple
      routing protocols; no one-to-one relationship SHALL be assumed.

   -  Routing Controllers (RCs) provide for the exchange of routing
      information (primitives) for the RA.  The RC is protocol
      independent and MAY be realized by multiple, different protocol
      controllers within an RA.  The routing information exchanged
      between RCs SHALL be subject to policy constraints imposed at
      reference points (External- and Internal-NNI).

   -  In a multi-level RA hierarchy based on containment, communication
      between RCs of different RAs happens only when there is a
      parent/child relationship between the RAs.  RCs of child RAs never
      communicate with the RCs of other child RAs.  There SHOULD not be
      any dependencies on the different routing protocols used within a
      child RA and that of its parent.  The routing information
      exchanged within the parent RA SHALL be independent of both the
      routing protocol operating within a child RA and any control
      distribution choice(s), e.g., centralized, fully distributed.

   -  For an RA, the set of RCs is referred to as an ASON routing
      (control) domain.  The routing information exchanged between
      routing domains (inter-RA, i.e., inter-domain) SHALL be
      independent of both the intra-domain routing protocol(s) and the
      intra-domain control distribution choice(s), e.g., centralized,
      fully distributed.  RCs bounded to different RA levels MAY be
      collocated within the same physical element or physically
      distributed.

   -  The routing adjacency topology (i.e., the associated PC
      connectivity topology) and the transport network topology SHALL
      NOT be assumed to be congruent.

   -  The routing topology SHALL support multiple links between nodes
      and RAs.

   In summary, the following functionality is expected from GMPLS
   routing to instantiate the ASON hierarchical routing architecture
   realization (see [G.7715] and [G.7715.1]):

   -  RAs SHALL be uniquely identifiable within a carrier's network,
      each having a unique RA ID within the carrier's network.

   -  Within an RA (one level), the routing protocol SHALL support
      dissemination of hierarchical routing information (including
      summarized routing information for other levels) in support of an
Top   ToC   RFC4258 - Page 14
      architecture of multiple hierarchical levels of RAs; the number of
      hierarchical RA levels to be supported by a routing protocol is
      implementation specific.

   -  The routing protocol SHALL support routing information based on a
      common set of information elements as defined in [G.7715] and
      [G.7715.1], divided between attributes pertaining to links and
      abstract nodes (each representing either a subnetwork or simply a
      node).  [G.7715] recognizes that the manner in which the routing
      information is represented and exchanged will vary with the
      routing protocol used.

   -  The routing protocol SHALL converge such that the distributed RDBs
      become synchronized after a period of time.

   To support hierarchical routing information dissemination within an
   RA, the routing protocol MUST deliver:

   -  Processing of routing information exchanged between adjacent
      levels of the hierarchy (i.e., Level N+1 and N) including
      reachability and, upon policy, decision summarized topology
      information.

   -  Self-consistent information at the receiving level resulting from
      any transformation (filter, summarize, etc.) and forwarding of
      information from one RC to RC(s) at different levels when multiple
      RCs are bound to a single RA.

   -  A mechanism to prevent the re-introduction of information
      propagated into the Level N RA's RC back to the adjacent level
      RA's RC from which this information has been initially received.

   In order to support operator-assisted changes in the containment
   relationships of RAs, the routing protocol SHALL support evolution in
   terms of the number of hierarchical levels of RAs.  For example:
   support of non-disruptive operations such as adding and removing RAs
   at the top/bottom of the hierarchy, adding or removing a hierarchical
   level of RAs in or from the middle of the hierarchy, as well as
   aggregation and segmentation of RAs.  The number of hierarchical
   levels to be supported is routing protocol specific and reflects a
   containment relationship; e.g., an RA insertion involves supporting a
   different routing protocol domain in a portion of the network.

   Reachability information (see Section 3.5.3) of the set of endpoints
   reachable by a node may be advertised either as a set of UNI
   Transport Resource addresses/address prefixes or a set of associated
   SNPP link IDs/SNPP link ID prefixes, assigned and selected
   consistently in their applicability scope.  The formats of the
Top   ToC   RFC4258 - Page 15
   control plane identifiers in a protocol realization are
   implementation specific.  Use of a routing protocol within an RA
   should not restrict the choice of routing protocols for use in other
   RAs (child or parent).

   As ASON does not restrict the control plane architecture choice used,
   either a collocated architecture or a physically separated
   architecture may be used.  A collection of links and nodes such as a
   subnetwork or RA MUST be able to represent itself to the wider
   network as a single logical entity with only its external links
   visible to the topology database.

6. Contributors

This document is the result of the CCAMP Working Group ASON Routing Requirements design team joint effort. The following are the design team member authors who contributed to the present document: Wesam Alanqar (Sprint) Deborah Brungard (ATT) David Meyer (Cisco Systems) Lyndon Ong (Ciena) Dimitri Papadimitriou (Alcatel) Jonathan Sadler (Tellabs) Stephen Shew (Nortel)

7. Acknowledgements

The authors would like to thank Kireeti Kompella for having initiated the proposal of an ASON Routing Requirement Design Team and the ITU-T SG15/Q14 for their careful review and input.
Top   ToC   RFC4258 - Page 16

8. References

8.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

For information on the availability of the following documents, please see http://www.itu.int: [G.707] ITU-T Rec. G.707/Y.1322, "Network Node Interface for the Synchronous Digital Hierarchy (SDH)", December 2003. [G.709] ITU-T Rec. G.709/Y.1331, "Interfaces for the Optical Transport Network (OTN)", March 2003. [G.7715] ITU-T Rec. G.7715/Y.1306, "Architecture and Requirements for the Automatically Switched Optical Network (ASON)", June 2002. [G.7715.1] ITU-T Draft Rec. G.7715.1/Y.1706.1, "ASON Routing Architecture and Requirements for Link State Protocols", November 2003. [G.805] ITU-T Rec. G.805, "Generic Functional Architecture of Transport Networks", March 2000. [G.8080] ITU-T Rec. G.8080/Y.1304, "Architecture for the Automatically Switched Optical Network (ASON)", November 2001 (and Revision, January 2003). [M.3016] ITU-T Rec. M.3016.0, "Security for the Management Plane: Overview", May 2005. [T1.105] ANSI T1.105, "Synchronous Optical Network (SONET) - Basic Description including Multiplex Structure, Rates, and Formats", 2001.
Top   ToC   RFC4258 - Page 17

Appendix 1: ASON Terminology

This document makes use of the following terms: Administrative domain (see Recommendation [G.805]): For the purposes of [G.7715.1], an administrative domain represents the extent of resources that belong to a single player such as a network operator, a service provider, or an end-user. Administrative domains of different players do not overlap amongst themselves. Adaptation function (see Recommendation [G.805]): A "transport processing function" that processes the client layer information for transfer over a server layer trail. Client/Server relationship: The association between layer networks that is performed by an "adaptation" function to allow the link connection in the client layer network to be supported by a trail in the server layer network. Control plane: Performs the call control and connection control functions. Through signaling, the control plane sets up and releases connections and may restore a connection in case of a failure. (Control) Domain: Represents a collection of (control) entities that are grouped for a particular purpose. The control plane is subdivided into domains matching administrative domains. Within an administrative domain, further subdivisions of the control plane are recursively applied. A routing control domain is an abstract entity that hides the details of the RC distribution. External NNI (E-NNI): Interfaces are located between protocol controllers between control domains. Internal NNI (I-NNI): Interfaces are located between protocol controllers within control domains. Link (see Recommendation [G.805]): A "topological component" that describes a fixed relationship between a "subnetwork" or "access group" and another "subnetwork" or "access group". Links are not limited to being provided by a single server trail. Management plane: Performs management functions for the transport plane, the control plane, and the system as a whole. It also provides coordination between all the planes. The following management functional areas are performed in the management plane: performance, fault, configuration, accounting, and security management.
Top   ToC   RFC4258 - Page 18
   Management domain (see Recommendation [G.805]): A management domain
   defines a collection of managed objects that are grouped to meet
   organizational requirements according to geography, technology,
   policy, or other structure, and for a number of functional areas such
   as configuration, security, (FCAPS), for the purpose of providing
   control in a consistent manner.  Management domains can be disjoint,
   contained, or overlapping.  As such, the resources within an
   administrative domain can be distributed into several possible
   overlapping management domains.  The same resource can therefore
   belong to several management domains simultaneously, but a management
   domain shall not cross the border of an administrative domain.

   Multiplexing (see Recommendation [G.805]): Multiplexing techniques
   are used to combine client layer signals.  The many-to-one
   relationship represents the case of several link connections of
   client layer networks supported by one server layer trail at the same
   time.

   Subnetwork Point (SNP): The SNP is a control plane abstraction that
   represents an actual or potential transport plane resource.  SNPs (in
   different subnetwork partitions) may represent the same transport
   resource.  A one-to-one correspondence should not be assumed.

   Subnetwork Point Pool (SNPP): A set of SNPs that are grouped together
   for the purposes of routing.

   Termination Connection Point (TCP): A TCP represents the output of a
   Trail Termination function or the input to a Trail Termination Sink
   function.

   Trail (see Recommendation [G.805]): A "transport entity" that
   consists of an associated pair of "unidirectional trails" capable of
   simultaneously transferring information in opposite directions
   between their respective inputs and outputs.

   Transport plane: Provides bi-directional or unidirectional transfer
   of user information, from one location to another.  It can also
   provide transfer of some control and network management information.
   The transport plane is layered; it is equivalent to the Transport
   Network defined in the [G.805] Recommendation.

   User Network Interface (UNI): Interfaces are located between protocol
   controllers between a user and a control domain.  Note: there is no
   routing function associated with a UNI reference point.

   Variable adaptation function: A single server layer trail may
   dynamically support different multiplexing structures, i.e., link
   connections for multiple client layer networks.
Top   ToC   RFC4258 - Page 19

Appendix 2: ASON Routing Terminology

This document makes use of the following terms: Routing Area (RA): An RA represents a partition of the data plane, and its identifier is used within the control plane as the representation of this partition. Per [G.8080], an RA is defined by a set of subnetworks, the links that interconnect them, and the interfaces representing the ends of the links exiting that RA. An RA may contain smaller RAs inter-connected by links. The limit of subdivision results in an RA that contains two subnetworks interconnected by a single link. Routing Database (RDB): Repository for the local topology, network topology, reachability, and other routing information that is updated as part of the routing information exchange and may additionally contain information that is configured. The RDB may contain routing information for more than one Routing Area (RA). Routing Components: ASON routing architecture functions. These functions can be classified as protocol independent (Link Resource Manager or LRM, Routing Controller or RC) and protocol specific (Protocol Controller or PC). Routing Controller (RC): Handles (abstract) information needed for routing and the routing information exchange with peering RCs by operating on the RDB. The RC has access to a view of the RDB. The RC is protocol independent. Note: Since the RDB may contain routing information pertaining to multiple RAs (and possibly to multiple layer networks), the RCs accessing the RDB may share the routing information. Link Resource Manager (LRM): Supplies all the relevant component and Traffic Engineering (TE) link information to the RC. It informs the RC about any state changes of the link resources it controls. Protocol Controller (PC): Handles protocol-specific message exchanges according to the reference point over which the information is exchanged (e.g., E-NNI, I-NNI), and internal exchanges with the RC. The PC function is protocol dependent.
Top   ToC   RFC4258 - Page 20

Authors' Addresses

Wesam Alanqar Sprint EMail: wesam.alanqar@mail.sprint.com Deborah Brungard, Ed. AT&T Rm. D1-3C22 - 200 S. Laurel Ave. Middletown, NJ 07748, USA Phone: +1 732 4201573 EMail: dbrungard@att.com David Meyer Cisco Systems EMail: dmm@1-4-5.net Lyndon Ong Ciena Corporation 5965 Silver Creek Valley Rd, San Jose, CA 95128, USA Phone: +1 408 8347894 EMail: lyong@ciena.com Dimitri Papadimitriou Alcatel Francis Wellensplein 1, B-2018 Antwerpen, Belgium Phone: +32 3 2408491 EMail: dimitri.papadimitriou@alcatel.be Jonathan Sadler 1415 W. Diehl Rd Naperville, IL 60563 EMail: jonathan.sadler@tellabs.com
Top   ToC   RFC4258 - Page 21
   Stephen Shew
   Nortel Networks
   PO Box 3511 Station C
   Ottawa, Ontario, CANADA K1Y 4H7

   Phone: +1 613 7632462
   EMail: sdshew@nortelnetworks.com
Top   ToC   RFC4258 - Page 22
Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.