Tech-invite3GPPspaceIETFspace
9796959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 2948

Telnet Encryption: DES3 64 bit Output Feedback

Pages: 6
Proposed Standard

ToP   noToC   RFC2948 - Page 1
Network Working Group                                          J. Altman
Request for Comments: 2948                           Columbia University
Category: Standards Track                                 September 2000


             Telnet Encryption: DES3 64 bit Output Feedback

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

This document specifies how to use the Triple-DES (data encryption standard) encryption algorithm in output feedback mode with the telnet encryption option.

1. Command Names and Codes

Encryption Type DES3_OFB64 4 Suboption Commands OFB64_IV 1 OFB64_IV_OK 2 OFB64_IV_BAD 3

2. Command Meanings

IAC SB ENCRYPT IS DES3_OFB64 OFB64_IV <initial vector> IAC SE The sender of this command generates a random 8 byte initial vector, and sends it to the other side of the connection using the OFB64_IV command. The initial vector is sent in clear text. Only the side of the connection that is WILL ENCRYPT may send the OFB64_IV command.
ToP   noToC   RFC2948 - Page 2
   IAC SB ENCRYPT REPLY DES3_OFB64 OFB64_IV_OK IAC SE
   IAC SB ENCRYPT REPLY DES3_OFB64 OFB64_IV_BAD IAC SE

     The sender of these commands either accepts or rejects the initial
     vector received in a OFB64_IV command.  Only the side of the
     connection that is DO ENCRYPT may send the OFB64_IV_OK and
     OFB64_IV_BAD commands.  The OFB64_IV_OK command MUST be sent for
     backwards compatibility with existing implementations; there
     really isn't any reason why a sender would need to send the
     OFB64_IV_BAD command except in the case of a protocol violation
     where the IV sent was not of the correct length (i.e., 8 bytes).

3. Implementation Rules

Once a OFB64_IV_OK command has been received, the WILL ENCRYPT side of the connection should do keyid negotiation using the ENC_KEYID command. Once the keyid negotiation has successfully identified a common keyid, then START and END commands may be sent by the side of the connection that is WILL ENCRYPT. Data will be encrypted using the DES3 64 bit Output Feedback algorithm. If encryption (decryption) is turned off and back on again, and the same keyid is used when re-starting the encryption (decryption), the intervening clear text must not change the state of the encryption (decryption) machine. If a START command is sent (received) with a different keyid, the encryption (decryption) machine must be re-initialized immediately following the end of the START command with the new key and the initial vector sent (received) in the last OFB64_IV command. If a new OFB64_IV command is sent (received), and encryption (decryption) is enabled, the encryption (decryption) machine must be re-initialized immediately following the end of the OFB64_IV command with the new initial vector, and the keyid sent (received) in the last START command. If encryption (decryption) is not enabled when a OFB64_IV command is sent (received), the encryption (decryption) machine must be re- initialized after the next START command, with the keyid sent (received) in that START command, and the initial vector sent (received) in this OFB64_IV command.
ToP   noToC   RFC2948 - Page 3

4. Algorithm

DES3 64 bit Output Feedback key1 key2 key3 | | | v v v +-------+ +-------+ +-------+ +->| DES-e |->| DES-d |->| DES-e |-- + | +-------+ +-------+ +-------+ | +------------------------------------+ v INPUT ------------------------------------->(+) ----> DATA Given: iV: Initial vector, 64 bits (8 bytes) long. Dn: the nth chunk of 64 bits (8 bytes) of data to encrypt (decrypt). On: the nth chunk of 64 bits (8 bytes) of encrypted (decrypted) output. V0 = DES-e(DES-d(DES-e(iV, key1),key2),key3) V(n+1) = DES-e(DES-d(DES-e(Vn, key1),key2),key3) On = Dn ^ Vn

5. Integration with the AUTHENTICATION telnet option

As noted in the telnet ENCRYPTION option specifications, a keyid value of zero indicates the default encryption key, as might be derived from the telnet AUTHENTICATION option. If the default encryption key negotiated as a result of the telnet AUTHENTICATION option contains less than 16 bytes, then the DES3_OFB64 option must not be offered or used as a valid telnet encryption option. The following rules are to be followed for creating three DES encryption keys based upon the available encrypt key data: keys_to_use = bytes of key data / DES block size (8 bytes) where the keys are labeled "key1" through "key6" with "key1" being the first 8 bytes; "key2" the second 8 bytes; ... and "key6" being sixth 8 bytes (if available). When two keys are available: . data sent from the server is encrypted with key1, decrypted with key2, and encrypted with key1;
ToP   noToC   RFC2948 - Page 4
    . data sent from the client is encrypted with key2, decrypted with
      key1, and encrypted with key2

   When three keys are available:

    . data sent from the server is encrypted with key1, decrypted with
      key2, and encrypted with key3;

    . data sent from the client is encrypted with key2, decrypted with
      key3, and encrypted with key1

   When four keys are available:

    . data sent from the server is encrypted with key1, decrypted with
      key2, and encrypted with key3;

    . data sent from the client is encrypted with key2, decrypted with
      key4, and encrypted with key1

   When five keys are available:

    . data sent from the server is encrypted with key1, decrypted with
      key2, and encrypted with key3;

    . data sent from the client is encrypted with key2, decrypted with
      key4, and encrypted with key5

   When six keys are available:

    . data sent from the server is encrypted with key1, decrypted with
      key2, and encrypted with key3;

    . data sent from the client is encrypted with key4, decrypted with
      key5, and encrypted with key6

   In all cases, the keys used by DES3_OFB64 must have their parity
   corrected after they are determined using the above algorithm.

   Note that the above algorithm assumes that it is safe to use a non-
   DES key (or part of a non-DES key) as a DES key.  This is not
   necessarily true of all cipher systems, but we specify this behaviour
   as the default since it is true for most authentication systems in
   popular use today, and for compatibility with existing
   implementations.  New telnet AUTHENTICATION mechanisms may specify
   alternative methods for determining the keys to be used for this
   cipher suite in their specification, if the session key negotiated by
   that authentication mechanism is not a DES key and and where this
   algorithm may not be safely used.
ToP   noToC   RFC2948 - Page 5

6. Security Considerations

Encryption using Output Feedback does not ensure data integrity; an active attacker may be able to substitute text, if he can predict the clear-text that was being transmitted. The tradeoff here is that adding a message authentication code (MAC) will significantly increase the number of bytes needed to send a single character in the telnet protocol, which will impact performance on slow (i.e. dialup) links. This option was originally drafted back when CPU speeds where not necessarily fast enough to do allow use of CFB. Since then, CPU's have gotten much faster. Given the inherent weaknesses in Output Feedback mode, perhaps it should be deprecated in favor of CFB modes?

7. Acknowledgments

This document was based on the "Telnet Encryption: DES 64 bit Output Feedback" document originally written by Dave Borman of Cray Research with the assistance of the IETF Telnet Working Group.

Author's Address

Jeffrey Altman, Editor Columbia University 612 West 115th Street Room 716 New York NY 10025 USA Phone: +1 (212) 854-1344 EMail: jaltman@columbia.edu
ToP   noToC   RFC2948 - Page 6
Full Copyright Statement

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.