HostEntry ::= SEQUENCE { hostAddress OCTET STRING, hostCreationOrder Integer32, hostIndex Integer32, hostInPkts Counter32, hostOutPkts Counter32, hostInOctets Counter32, hostOutOctets Counter32, hostOutErrors Counter32, hostOutBroadcastPkts Counter32, hostOutMulticastPkts Counter32 } hostAddress OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-only STATUS current DESCRIPTION "The physical address of this host." ::= { hostEntry 1 } hostCreationOrder OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "An index that defines the relative ordering of the creation time of hosts captured for a particular hostControlEntry. This index shall be between 1 and N, where N is the value of the associated hostControlTableSize. The ordering of the indexes is based on the order of each entry's insertion into the table, in which entries added earlier have a lower index value than entries added later. It is important to note that the order for a particular entry may change as an (earlier) entry is deleted from the table. Because this order may change, management stations should make use of the hostControlLastDeleteTime variable in the hostControlEntry associated with the relevant portion of the hostTable. By observing this variable, the management station may detect the circumstances where a previous association between a value of hostCreationOrder and a hostEntry may no longer hold." ::= { hostEntry 2 }
hostIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "The set of collected host statistics of which this entry is a part. The set of hosts identified by a particular value of this index is associated with the hostControlEntry as identified by the same value of hostControlIndex." ::= { hostEntry 3 } hostInPkts OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of good packets transmitted to this address since it was added to the hostTable." ::= { hostEntry 4 } hostOutPkts OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of packets, including bad packets, transmitted by this address since it was added to the hostTable." ::= { hostEntry 5 } hostInOctets OBJECT-TYPE SYNTAX Counter32 UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets transmitted to this address since it was added to the hostTable (excluding framing bits but including FCS octets), except for those octets in bad packets." ::= { hostEntry 6 } hostOutOctets OBJECT-TYPE SYNTAX Counter32 UNITS "Octets" MAX-ACCESS read-only
STATUS current DESCRIPTION "The number of octets transmitted by this address since it was added to the hostTable (excluding framing bits but including FCS octets), including those octets in bad packets." ::= { hostEntry 7 } hostOutErrors OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of bad packets transmitted by this address since this host was added to the hostTable." ::= { hostEntry 8 } hostOutBroadcastPkts OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of good packets transmitted by this address that were directed to the broadcast address since this host was added to the hostTable." ::= { hostEntry 9 } hostOutMulticastPkts OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of good packets transmitted by this address that were directed to a multicast address since this host was added to the hostTable. Note that this number does not include packets directed to the broadcast address." ::= { hostEntry 10 } -- host Time Table hostTimeTable OBJECT-TYPE SYNTAX SEQUENCE OF HostTimeEntry MAX-ACCESS not-accessible STATUS current
DESCRIPTION "A list of time-ordered host table entries." ::= { hosts 3 } hostTimeEntry OBJECT-TYPE SYNTAX HostTimeEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A collection of statistics for a particular host that has been discovered on an interface of this device. This collection includes the relative ordering of the creation time of this object. For example, an instance of the hostTimeOutBroadcastPkts object might be named hostTimeOutBroadcastPkts.1.687" INDEX { hostTimeIndex, hostTimeCreationOrder } ::= { hostTimeTable 1 } HostTimeEntry ::= SEQUENCE { hostTimeAddress OCTET STRING, hostTimeCreationOrder Integer32, hostTimeIndex Integer32, hostTimeInPkts Counter32, hostTimeOutPkts Counter32, hostTimeInOctets Counter32, hostTimeOutOctets Counter32, hostTimeOutErrors Counter32, hostTimeOutBroadcastPkts Counter32, hostTimeOutMulticastPkts Counter32 } hostTimeAddress OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-only STATUS current DESCRIPTION "The physical address of this host." ::= { hostTimeEntry 1 } hostTimeCreationOrder OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "An index that uniquely identifies an entry in the hostTime table among those entries associated with the same hostControlEntry. This index shall be between 1 and N, where N is the value of
the associated hostControlTableSize. The ordering of the indexes is based on the order of each entry's insertion into the table, in which entries added earlier have a lower index value than entries added later. Thus the management station has the ability to learn of new entries added to this table without downloading the entire table. It is important to note that the index for a particular entry may change as an (earlier) entry is deleted from the table. Because this order may change, management stations should make use of the hostControlLastDeleteTime variable in the hostControlEntry associated with the relevant portion of the hostTimeTable. By observing this variable, the management station may detect the circumstances where a download of the table may have missed entries, and where a previous association between a value of hostTimeCreationOrder and a hostTimeEntry may no longer hold." ::= { hostTimeEntry 2 } hostTimeIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "The set of collected host statistics of which this entry is a part. The set of hosts identified by a particular value of this index is associated with the hostControlEntry as identified by the same value of hostControlIndex." ::= { hostTimeEntry 3 } hostTimeInPkts OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of good packets transmitted to this address since it was added to the hostTimeTable." ::= { hostTimeEntry 4 } hostTimeOutPkts OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only
STATUS current DESCRIPTION "The number of packets, including bad packets, transmitted by this address since it was added to the hostTimeTable." ::= { hostTimeEntry 5 } hostTimeInOctets OBJECT-TYPE SYNTAX Counter32 UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets transmitted to this address since it was added to the hostTimeTable (excluding framing bits but including FCS octets), except for those octets in bad packets." ::= { hostTimeEntry 6 } hostTimeOutOctets OBJECT-TYPE SYNTAX Counter32 UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets transmitted by this address since it was added to the hostTimeTable (excluding framing bits but including FCS octets), including those octets in bad packets." ::= { hostTimeEntry 7 } hostTimeOutErrors OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of bad packets transmitted by this address since this host was added to the hostTimeTable." ::= { hostTimeEntry 8 } hostTimeOutBroadcastPkts OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of good packets transmitted by this address that were directed to the broadcast address
since this host was added to the hostTimeTable." ::= { hostTimeEntry 9 } hostTimeOutMulticastPkts OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of good packets transmitted by this address that were directed to a multicast address since this host was added to the hostTimeTable. Note that this number does not include packets directed to the broadcast address." ::= { hostTimeEntry 10 } -- The Host Top "N" Group -- Implementation of the Host Top N group is optional. The Host Top N -- group requires the implementation of the host group. -- Consult the MODULE-COMPLIANCE macro for the authoritative -- conformance information for this MIB. -- -- The Host Top N group is used to prepare reports that describe -- the hosts that top a list ordered by one of their statistics. -- The available statistics are samples of one of their -- base statistics, over an interval specified by the management -- station. Thus, these statistics are rate based. The management -- station also selects how many such hosts are reported. -- The hostTopNControlTable is used to initiate the generation of -- such a report. The management station may select the parameters -- of such a report, such as which interface, which statistic, -- how many hosts, and the start and stop times of the sampling. -- When the report is prepared, entries are created in the -- hostTopNTable associated with the relevant hostTopNControlEntry. -- These entries are static for each report after it has been -- prepared. hostTopNControlTable OBJECT-TYPE SYNTAX SEQUENCE OF HostTopNControlEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A list of top N host control entries." ::= { hostTopN 1 } hostTopNControlEntry OBJECT-TYPE
SYNTAX HostTopNControlEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A set of parameters that control the creation of a report of the top N hosts according to several metrics. For example, an instance of the hostTopNDuration object might be named hostTopNDuration.3" INDEX { hostTopNControlIndex } ::= { hostTopNControlTable 1 } HostTopNControlEntry ::= SEQUENCE { hostTopNControlIndex Integer32, hostTopNHostIndex Integer32, hostTopNRateBase INTEGER, hostTopNTimeRemaining Integer32, hostTopNDuration Integer32, hostTopNRequestedSize Integer32, hostTopNGrantedSize Integer32, hostTopNStartTime TimeTicks, hostTopNOwner OwnerString, hostTopNStatus EntryStatus } hostTopNControlIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "An index that uniquely identifies an entry in the hostTopNControl table. Each such entry defines one top N report prepared for one interface." ::= { hostTopNControlEntry 1 } hostTopNHostIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-create STATUS current DESCRIPTION "The host table for which a top N report will be prepared on behalf of this entry. The host table identified by a particular value of this index is associated with the same host table as identified by the same value of hostIndex. This object may not be modified if the associated hostTopNStatus object is equal to valid(1)."
::= { hostTopNControlEntry 2 } hostTopNRateBase OBJECT-TYPE SYNTAX INTEGER { hostTopNInPkts(1), hostTopNOutPkts(2), hostTopNInOctets(3), hostTopNOutOctets(4), hostTopNOutErrors(5), hostTopNOutBroadcastPkts(6), hostTopNOutMulticastPkts(7) } MAX-ACCESS read-create STATUS current DESCRIPTION "The variable for each host that the hostTopNRate variable is based upon. This object may not be modified if the associated hostTopNStatus object is equal to valid(1)." ::= { hostTopNControlEntry 3 } hostTopNTimeRemaining OBJECT-TYPE SYNTAX Integer32 UNITS "Seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The number of seconds left in the report currently being collected. When this object is modified by the management station, a new collection is started, possibly aborting a currently running report. The new value is used as the requested duration of this report, which is loaded into the associated hostTopNDuration object. When this object is set to a non-zero value, any associated hostTopNEntries shall be made inaccessible by the monitor. While the value of this object is non-zero, it decrements by one per second until it reaches zero. During this time, all associated hostTopNEntries shall remain inaccessible. At the time that this object decrements to zero, the report is made accessible in the hostTopNTable. Thus, the hostTopN table needs to be created only at the end of the collection interval." DEFVAL { 0 } ::= { hostTopNControlEntry 4 }
hostTopNDuration OBJECT-TYPE SYNTAX Integer32 UNITS "Seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of seconds that this report has collected during the last sampling interval, or if this report is currently being collected, the number of seconds that this report is being collected during this sampling interval. When the associated hostTopNTimeRemaining object is set, this object shall be set by the probe to the same value and shall not be modified until the next time the hostTopNTimeRemaining is set. This value shall be zero if no reports have been requested for this hostTopNControlEntry." DEFVAL { 0 } ::= { hostTopNControlEntry 5 } hostTopNRequestedSize OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-create STATUS current DESCRIPTION "The maximum number of hosts requested for the top N table. When this object is created or modified, the probe should set hostTopNGrantedSize as closely to this object as is possible for the particular probe implementation and available resources." DEFVAL { 10 } ::= { hostTopNControlEntry 6 } hostTopNGrantedSize OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "The maximum number of hosts in the top N table. When the associated hostTopNRequestedSize object is created or modified, the probe should set this object as closely to the requested value as is possible for the particular implementation and available
resources. The probe must not lower this value except as a result of a set to the associated hostTopNRequestedSize object. Hosts with the highest value of hostTopNRate shall be placed in this table in decreasing order of this rate until there is no more room or until there are no more hosts." ::= { hostTopNControlEntry 7 } hostTopNStartTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when this top N report was last started. In other words, this is the time that the associated hostTopNTimeRemaining object was modified to start the requested report." ::= { hostTopNControlEntry 8 } hostTopNOwner OBJECT-TYPE SYNTAX OwnerString MAX-ACCESS read-create STATUS current DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { hostTopNControlEntry 9 } hostTopNStatus OBJECT-TYPE SYNTAX EntryStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this hostTopNControl entry. If this object is not equal to valid(1), all associated hostTopNEntries shall be deleted by the agent." ::= { hostTopNControlEntry 10 } hostTopNTable OBJECT-TYPE SYNTAX SEQUENCE OF HostTopNEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A list of top N host entries." ::= { hostTopN 2 }
hostTopNEntry OBJECT-TYPE SYNTAX HostTopNEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A set of statistics for a host that is part of a top N report. For example, an instance of the hostTopNRate object might be named hostTopNRate.3.10" INDEX { hostTopNReport, hostTopNIndex } ::= { hostTopNTable 1 } HostTopNEntry ::= SEQUENCE { hostTopNReport Integer32, hostTopNIndex Integer32, hostTopNAddress OCTET STRING, hostTopNRate Integer32 } hostTopNReport OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "This object identifies the top N report of which this entry is a part. The set of hosts identified by a particular value of this object is part of the same report as identified by the same value of the hostTopNControlIndex object." ::= { hostTopNEntry 1 } hostTopNIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "An index that uniquely identifies an entry in the hostTopN table among those in the same report. This index is between 1 and N, where N is the number of entries in this table. Increasing values of hostTopNIndex shall be assigned to entries with decreasing values of hostTopNRate until index N is assigned to the entry with the lowest value of hostTopNRate or there are no more hostTopNEntries." ::= { hostTopNEntry 2 } hostTopNAddress OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-only
STATUS current DESCRIPTION "The physical address of this host." ::= { hostTopNEntry 3 } hostTopNRate OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "The amount of change in the selected variable during this sampling interval. The selected variable is this host's instance of the object selected by hostTopNRateBase." ::= { hostTopNEntry 4 } -- The Matrix Group -- Implementation of the Matrix group is optional. -- Consult the MODULE-COMPLIANCE macro for the authoritative -- conformance information for this MIB. -- -- The Matrix group consists of the matrixControlTable, matrixSDTable -- and the matrixDSTable. These tables store statistics for a -- particular conversation between two addresses. As the device -- detects a new conversation, including those to a non-unicast -- address, it creates a new entry in both of the matrix tables. -- It must only create new entries based on information -- received in good packets. If the monitoring device finds -- itself short of resources, it may delete entries as needed. -- It is suggested that the device delete the least recently used -- entries first. matrixControlTable OBJECT-TYPE SYNTAX SEQUENCE OF MatrixControlEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A list of information entries for the traffic matrix on each interface." ::= { matrix 1 } matrixControlEntry OBJECT-TYPE SYNTAX MatrixControlEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information about a traffic matrix on a particular
interface. For example, an instance of the matrixControlLastDeleteTime object might be named matrixControlLastDeleteTime.1" INDEX { matrixControlIndex } ::= { matrixControlTable 1 } MatrixControlEntry ::= SEQUENCE { matrixControlIndex Integer32, matrixControlDataSource OBJECT IDENTIFIER, matrixControlTableSize Integer32, matrixControlLastDeleteTime TimeTicks, matrixControlOwner OwnerString, matrixControlStatus EntryStatus } matrixControlIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "An index that uniquely identifies an entry in the matrixControl table. Each such entry defines a function that discovers conversations on a particular interface and places statistics about them in the matrixSDTable and the matrixDSTable on behalf of this matrixControlEntry." ::= { matrixControlEntry 1 } matrixControlDataSource OBJECT-TYPE SYNTAX OBJECT IDENTIFIER MAX-ACCESS read-create STATUS current DESCRIPTION "This object identifies the source of the data from which this entry creates a traffic matrix. This source can be any interface on this device. In order to identify a particular interface, this object shall identify the instance of the ifIndex object, defined in RFC 2233 [17], for the desired interface. For example, if an entry were to receive data from interface #1, this object would be set to ifIndex.1. The statistics in this group reflect all packets on the local network segment attached to the identified interface. An agent may or may not be able to tell if fundamental changes to the media of the interface have occurred and
necessitate an invalidation of this entry. For example, a hot-pluggable ethernet card could be pulled out and replaced by a token-ring card. In such a case, if the agent has such knowledge of the change, it is recommended that it invalidate this entry. This object may not be modified if the associated matrixControlStatus object is equal to valid(1)." ::= { matrixControlEntry 2 } matrixControlTableSize OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of matrixSDEntries in the matrixSDTable for this interface. This must also be the value of the number of entries in the matrixDSTable for this interface." ::= { matrixControlEntry 3 } matrixControlLastDeleteTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when the last entry was deleted from the portion of the matrixSDTable or matrixDSTable associated with this matrixControlEntry. If no deletions have occurred, this value shall be zero." ::= { matrixControlEntry 4 } matrixControlOwner OBJECT-TYPE SYNTAX OwnerString MAX-ACCESS read-create STATUS current DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { matrixControlEntry 5 } matrixControlStatus OBJECT-TYPE SYNTAX EntryStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this matrixControl entry.
If this object is not equal to valid(1), all associated entries in the matrixSDTable and the matrixDSTable shall be deleted by the agent." ::= { matrixControlEntry 6 } matrixSDTable OBJECT-TYPE SYNTAX SEQUENCE OF MatrixSDEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A list of traffic matrix entries indexed by source and destination MAC address." ::= { matrix 2 } matrixSDEntry OBJECT-TYPE SYNTAX MatrixSDEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A collection of statistics for communications between two addresses on a particular interface. For example, an instance of the matrixSDPkts object might be named matrixSDPkts.1.6.8.0.32.27.3.176.6.8.0.32.10.8.113" INDEX { matrixSDIndex, matrixSDSourceAddress, matrixSDDestAddress } ::= { matrixSDTable 1 } MatrixSDEntry ::= SEQUENCE { matrixSDSourceAddress OCTET STRING, matrixSDDestAddress OCTET STRING, matrixSDIndex Integer32, matrixSDPkts Counter32, matrixSDOctets Counter32, matrixSDErrors Counter32 } matrixSDSourceAddress OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-only STATUS current DESCRIPTION "The source physical address." ::= { matrixSDEntry 1 } matrixSDDestAddress OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-only STATUS current
DESCRIPTION "The destination physical address." ::= { matrixSDEntry 2 } matrixSDIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "The set of collected matrix statistics of which this entry is a part. The set of matrix statistics identified by a particular value of this index is associated with the same matrixControlEntry as identified by the same value of matrixControlIndex." ::= { matrixSDEntry 3 } matrixSDPkts OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of packets transmitted from the source address to the destination address (this number includes bad packets)." ::= { matrixSDEntry 4 } matrixSDOctets OBJECT-TYPE SYNTAX Counter32 UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets (excluding framing bits but including FCS octets) contained in all packets transmitted from the source address to the destination address." ::= { matrixSDEntry 5 } matrixSDErrors OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of bad packets transmitted from the source address to the destination address." ::= { matrixSDEntry 6 }
-- Traffic matrix tables from destination to source matrixDSTable OBJECT-TYPE SYNTAX SEQUENCE OF MatrixDSEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A list of traffic matrix entries indexed by destination and source MAC address." ::= { matrix 3 } matrixDSEntry OBJECT-TYPE SYNTAX MatrixDSEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A collection of statistics for communications between two addresses on a particular interface. For example, an instance of the matrixSDPkts object might be named matrixSDPkts.1.6.8.0.32.10.8.113.6.8.0.32.27.3.176" INDEX { matrixDSIndex, matrixDSDestAddress, matrixDSSourceAddress } ::= { matrixDSTable 1 } MatrixDSEntry ::= SEQUENCE { matrixDSSourceAddress OCTET STRING, matrixDSDestAddress OCTET STRING, matrixDSIndex Integer32, matrixDSPkts Counter32, matrixDSOctets Counter32, matrixDSErrors Counter32 } matrixDSSourceAddress OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-only STATUS current DESCRIPTION "The source physical address." ::= { matrixDSEntry 1 } matrixDSDestAddress OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-only STATUS current DESCRIPTION "The destination physical address." ::= { matrixDSEntry 2 }
matrixDSIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "The set of collected matrix statistics of which this entry is a part. The set of matrix statistics identified by a particular value of this index is associated with the same matrixControlEntry as identified by the same value of matrixControlIndex." ::= { matrixDSEntry 3 } matrixDSPkts OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of packets transmitted from the source address to the destination address (this number includes bad packets)." ::= { matrixDSEntry 4 } matrixDSOctets OBJECT-TYPE SYNTAX Counter32 UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets (excluding framing bits but including FCS octets) contained in all packets transmitted from the source address to the destination address." ::= { matrixDSEntry 5 } matrixDSErrors OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of bad packets transmitted from the source address to the destination address." ::= { matrixDSEntry 6 } -- The Filter Group -- Implementation of the Filter group is optional.
-- Consult the MODULE-COMPLIANCE macro for the authoritative -- conformance information for this MIB. -- -- The Filter group allows packets to be captured with an -- arbitrary filter expression. A logical data and -- event stream or "channel" is formed by the packets -- that match the filter expression. -- -- This filter mechanism allows the creation of an arbitrary -- logical expression with which to filter packets. Each -- filter associated with a channel is OR'ed with the others. -- Within a filter, any bits checked in the data and status are -- AND'ed with respect to other bits in the same filter. The -- NotMask also allows for checking for inequality. Finally, -- the channelAcceptType object allows for inversion of the -- whole equation. -- -- If a management station wishes to receive a trap to alert it -- that new packets have been captured and are available for -- download, it is recommended that it set up an alarm entry that -- monitors the value of the relevant channelMatches instance. -- -- The channel can be turned on or off, and can also -- generate events when packets pass through it. filterTable OBJECT-TYPE SYNTAX SEQUENCE OF FilterEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A list of packet filter entries." ::= { filter 1 } filterEntry OBJECT-TYPE SYNTAX FilterEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A set of parameters for a packet filter applied on a particular interface. As an example, an instance of the filterPktData object might be named filterPktData.12" INDEX { filterIndex } ::= { filterTable 1 } FilterEntry ::= SEQUENCE { filterIndex Integer32, filterChannelIndex Integer32, filterPktDataOffset Integer32,
filterPktData OCTET STRING, filterPktDataMask OCTET STRING, filterPktDataNotMask OCTET STRING, filterPktStatus Integer32, filterPktStatusMask Integer32, filterPktStatusNotMask Integer32, filterOwner OwnerString, filterStatus EntryStatus } filterIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "An index that uniquely identifies an entry in the filter table. Each such entry defines one filter that is to be applied to every packet received on an interface." ::= { filterEntry 1 } filterChannelIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-create STATUS current DESCRIPTION "This object identifies the channel of which this filter is a part. The filters identified by a particular value of this object are associated with the same channel as identified by the same value of the channelIndex object." ::= { filterEntry 2 } filterPktDataOffset OBJECT-TYPE SYNTAX Integer32 UNITS "Octets" MAX-ACCESS read-create STATUS current DESCRIPTION "The offset from the beginning of each packet where a match of packet data will be attempted. This offset is measured from the point in the physical layer packet after the framing bits, if any. For example, in an Ethernet frame, this point is at the beginning of the destination MAC address. This object may not be modified if the associated filterStatus object is equal to valid(1)." DEFVAL { 0 }
::= { filterEntry 3 } filterPktData OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-create STATUS current DESCRIPTION "The data that is to be matched with the input packet. For each packet received, this filter and the accompanying filterPktDataMask and filterPktDataNotMask will be adjusted for the offset. The only bits relevant to this match algorithm are those that have the corresponding filterPktDataMask bit equal to one. The following three rules are then applied to every packet: (1) If the packet is too short and does not have data corresponding to part of the filterPktData, the packet will fail this data match. (2) For each relevant bit from the packet with the corresponding filterPktDataNotMask bit set to zero, if the bit from the packet is not equal to the corresponding bit from the filterPktData, then the packet will fail this data match. (3) If for every relevant bit from the packet with the corresponding filterPktDataNotMask bit set to one, the bit from the packet is equal to the corresponding bit from the filterPktData, then the packet will fail this data match. Any packets that have not failed any of the three matches above have passed this data match. In particular, a zero length filter will match any packet. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 4 } filterPktDataMask OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-create STATUS current DESCRIPTION "The mask that is applied to the match process. After adjusting this mask for the offset, only those bits in the received packet that correspond to bits set in this mask are relevant for further processing by the
match algorithm. The offset is applied to filterPktDataMask in the same way it is applied to the filter. For the purposes of the matching algorithm, if the associated filterPktData object is longer than this mask, this mask is conceptually extended with '1' bits until it reaches the length of the filterPktData object. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 5 } filterPktDataNotMask OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-create STATUS current DESCRIPTION "The inversion mask that is applied to the match process. After adjusting this mask for the offset, those relevant bits in the received packet that correspond to bits cleared in this mask must all be equal to their corresponding bits in the filterPktData object for the packet to be accepted. In addition, at least one of those relevant bits in the received packet that correspond to bits set in this mask must be different to its corresponding bit in the filterPktData object. For the purposes of the matching algorithm, if the associated filterPktData object is longer than this mask, this mask is conceptually extended with '0' bits until it reaches the length of the filterPktData object. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 6 } filterPktStatus OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-create STATUS current DESCRIPTION "The status that is to be matched with the input packet. The only bits relevant to this match algorithm are those that have the corresponding filterPktStatusMask bit equal to one. The following two rules are then applied to every packet: (1) For each relevant bit from the packet status with the corresponding filterPktStatusNotMask bit set to zero, if the bit from the packet status is not equal to the
corresponding bit from the filterPktStatus, then the packet will fail this status match. (2) If for every relevant bit from the packet status with the corresponding filterPktStatusNotMask bit set to one, the bit from the packet status is equal to the corresponding bit from the filterPktStatus, then the packet will fail this status match. Any packets that have not failed either of the two matches above have passed this status match. In particular, a zero length status filter will match any packet's status. The value of the packet status is a sum. This sum initially takes the value zero. Then, for each error, E, that has been discovered in this packet, 2 raised to a value representing E is added to the sum. The errors and the bits that represent them are dependent on the media type of the interface that this channel is receiving packets from. The errors defined for a packet captured off of an Ethernet interface are as follows: bit # Error 0 Packet is longer than 1518 octets 1 Packet is shorter than 64 octets 2 Packet experienced a CRC or Alignment error For example, an Ethernet fragment would have a value of 6 (2^1 + 2^2). As this MIB is expanded to new media types, this object will have other media-specific errors defined. For the purposes of this status matching algorithm, if the packet status is longer than this filterPktStatus object, this object is conceptually extended with '0' bits until it reaches the size of the packet status. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 7 } filterPktStatusMask OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-create STATUS current
DESCRIPTION "The mask that is applied to the status match process. Only those bits in the received packet that correspond to bits set in this mask are relevant for further processing by the status match algorithm. For the purposes of the matching algorithm, if the associated filterPktStatus object is longer than this mask, this mask is conceptually extended with '1' bits until it reaches the size of the filterPktStatus. In addition, if a packet status is longer than this mask, this mask is conceptually extended with '0' bits until it reaches the size of the packet status. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 8 } filterPktStatusNotMask OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-create STATUS current DESCRIPTION "The inversion mask that is applied to the status match process. Those relevant bits in the received packet status that correspond to bits cleared in this mask must all be equal to their corresponding bits in the filterPktStatus object for the packet to be accepted. In addition, at least one of those relevant bits in the received packet status that correspond to bits set in this mask must be different to its corresponding bit in the filterPktStatus object for the packet to be accepted. For the purposes of the matching algorithm, if the associated filterPktStatus object or a packet status is longer than this mask, this mask is conceptually extended with '0' bits until it reaches the longer of the lengths of the filterPktStatus object and the packet status. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 9 } filterOwner OBJECT-TYPE SYNTAX OwnerString MAX-ACCESS read-create STATUS current DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it."
::= { filterEntry 10 } filterStatus OBJECT-TYPE SYNTAX EntryStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this filter entry." ::= { filterEntry 11 } channelTable OBJECT-TYPE SYNTAX SEQUENCE OF ChannelEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A list of packet channel entries." ::= { filter 2 } channelEntry OBJECT-TYPE SYNTAX ChannelEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A set of parameters for a packet channel applied on a particular interface. As an example, an instance of the channelMatches object might be named channelMatches.3" INDEX { channelIndex } ::= { channelTable 1 } ChannelEntry ::= SEQUENCE { channelIndex Integer32, channelIfIndex Integer32, channelAcceptType INTEGER, channelDataControl INTEGER, channelTurnOnEventIndex Integer32, channelTurnOffEventIndex Integer32, channelEventIndex Integer32, channelEventStatus INTEGER, channelMatches Counter32, channelDescription DisplayString, channelOwner OwnerString, channelStatus EntryStatus } channelIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current
DESCRIPTION "An index that uniquely identifies an entry in the channel table. Each such entry defines one channel, a logical data and event stream. It is suggested that before creating a channel, an application should scan all instances of the filterChannelIndex object to make sure that there are no pre-existing filters that would be inadvertently be linked to the channel." ::= { channelEntry 1 } channelIfIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object uniquely identifies the interface on this remote network monitoring device to which the associated filters are applied to allow data into this channel. The interface identified by a particular value of this object is the same interface as identified by the same value of the ifIndex object, defined in RFC 2233 [17]. The filters in this group are applied to all packets on the local network segment attached to the identified interface. An agent may or may not be able to tell if fundamental changes to the media of the interface have occurred and necessitate an invalidation of this entry. For example, a hot-pluggable ethernet card could be pulled out and replaced by a token-ring card. In such a case, if the agent has such knowledge of the change, it is recommended that it invalidate this entry. This object may not be modified if the associated channelStatus object is equal to valid(1)." ::= { channelEntry 2 } channelAcceptType OBJECT-TYPE SYNTAX INTEGER { acceptMatched(1), acceptFailed(2) } MAX-ACCESS read-create STATUS current DESCRIPTION
"This object controls the action of the filters associated with this channel. If this object is equal to acceptMatched(1), packets will be accepted to this channel if they are accepted by both the packet data and packet status matches of an associated filter. If this object is equal to acceptFailed(2), packets will be accepted to this channel only if they fail either the packet data match or the packet status match of each of the associated filters. In particular, a channel with no associated filters will match no packets if set to acceptMatched(1) case and will match all packets in the acceptFailed(2) case. This object may not be modified if the associated channelStatus object is equal to valid(1)." ::= { channelEntry 3 } channelDataControl OBJECT-TYPE SYNTAX INTEGER { on(1), off(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "This object controls the flow of data through this channel. If this object is on(1), data, status and events flow through this channel. If this object is off(2), data, status and events will not flow through this channel." DEFVAL { off } ::= { channelEntry 4 } channelTurnOnEventIndex OBJECT-TYPE SYNTAX Integer32 (0..65535) MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object identifies the event that is configured to turn the associated channelDataControl from off to on when the event is generated. The event identified by a particular value of this object is the same event as identified by the same value of the eventIndex object. If there is no corresponding entry in the eventTable, then no association exists. In fact, if no event is intended for this channel, channelTurnOnEventIndex must be set to zero, a non-existent event index.
This object may not be modified if the associated channelStatus object is equal to valid(1)." ::= { channelEntry 5 } channelTurnOffEventIndex OBJECT-TYPE SYNTAX Integer32 (0..65535) MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object identifies the event that is configured to turn the associated channelDataControl from on to off when the event is generated. The event identified by a particular value of this object is the same event as identified by the same value of the eventIndex object. If there is no corresponding entry in the eventTable, then no association exists. In fact, if no event is intended for this channel, channelTurnOffEventIndex must be set to zero, a non-existent event index. This object may not be modified if the associated channelStatus object is equal to valid(1)." ::= { channelEntry 6 } channelEventIndex OBJECT-TYPE SYNTAX Integer32 (0..65535) MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object identifies the event that is configured to be generated when the associated channelDataControl is on and a packet is matched. The event identified by a particular value of this object is the same event as identified by the same value of the eventIndex object. If there is no corresponding entry in the eventTable, then no association exists. In fact, if no event is intended for this channel, channelEventIndex must be set to zero, a non-existent event index. This object may not be modified if the associated channelStatus object is equal to valid(1)." ::= { channelEntry 7 } channelEventStatus OBJECT-TYPE SYNTAX INTEGER { eventReady(1), eventFired(2),
eventAlwaysReady(3) } MAX-ACCESS read-create STATUS current DESCRIPTION "The event status of this channel. If this channel is configured to generate events when packets are matched, a means of controlling the flow of those events is often needed. When this object is equal to eventReady(1), a single event may be generated, after which this object will be set by the probe to eventFired(2). While in the eventFired(2) state, no events will be generated until the object is modified to eventReady(1) (or eventAlwaysReady(3)). The management station can thus easily respond to a notification of an event by re-enabling this object. If the management station wishes to disable this flow control and allow events to be generated at will, this object may be set to eventAlwaysReady(3). Disabling the flow control is discouraged as it can result in high network traffic or other performance problems." DEFVAL { eventReady } ::= { channelEntry 8 } channelMatches OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times this channel has matched a packet. Note that this object is updated even when channelDataControl is set to off." ::= { channelEntry 9 } channelDescription OBJECT-TYPE SYNTAX DisplayString (SIZE (0..127)) MAX-ACCESS read-create STATUS current DESCRIPTION "A comment describing this channel." ::= { channelEntry 10 } channelOwner OBJECT-TYPE
SYNTAX OwnerString MAX-ACCESS read-create STATUS current DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { channelEntry 11 } channelStatus OBJECT-TYPE SYNTAX EntryStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this channel entry." ::= { channelEntry 12 } -- The Packet Capture Group -- Implementation of the Packet Capture group is optional. The Packet -- Capture Group requires implementation of the Filter Group. -- Consult the MODULE-COMPLIANCE macro for the authoritative -- conformance information for this MIB. -- -- The Packet Capture group allows packets to be captured -- upon a filter match. The bufferControlTable controls -- the captured packets output from a channel that is -- associated with it. The captured packets are placed -- in entries in the captureBufferTable. These entries are -- associated with the bufferControlEntry on whose behalf they -- were stored. bufferControlTable OBJECT-TYPE SYNTAX SEQUENCE OF BufferControlEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A list of buffers control entries." ::= { capture 1 } bufferControlEntry OBJECT-TYPE SYNTAX BufferControlEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A set of parameters that control the collection of a stream of packets that have matched filters. As an example, an instance of the bufferControlCaptureSliceSize object might be named bufferControlCaptureSliceSize.3"
INDEX { bufferControlIndex } ::= { bufferControlTable 1 } BufferControlEntry ::= SEQUENCE { bufferControlIndex Integer32, bufferControlChannelIndex Integer32, bufferControlFullStatus INTEGER, bufferControlFullAction INTEGER, bufferControlCaptureSliceSize Integer32, bufferControlDownloadSliceSize Integer32, bufferControlDownloadOffset Integer32, bufferControlMaxOctetsRequested Integer32, bufferControlMaxOctetsGranted Integer32, bufferControlCapturedPackets Integer32, bufferControlTurnOnTime TimeTicks, bufferControlOwner OwnerString, bufferControlStatus EntryStatus } bufferControlIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "An index that uniquely identifies an entry in the bufferControl table. The value of this index shall never be zero. Each such entry defines one set of packets that is captured and controlled by one or more filters." ::= { bufferControlEntry 1 } bufferControlChannelIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS read-create STATUS current DESCRIPTION "An index that identifies the channel that is the source of packets for this bufferControl table. The channel identified by a particular value of this index is the same as identified by the same value of the channelIndex object. This object may not be modified if the associated bufferControlStatus object is equal to valid(1)." ::= { bufferControlEntry 2 } bufferControlFullStatus OBJECT-TYPE SYNTAX INTEGER {
spaceAvailable(1), full(2) } MAX-ACCESS read-only STATUS current DESCRIPTION "This object shows whether the buffer has room to accept new packets or if it is full. If the status is spaceAvailable(1), the buffer is accepting new packets normally. If the status is full(2) and the associated bufferControlFullAction object is wrapWhenFull, the buffer is accepting new packets by deleting enough of the oldest packets to make room for new ones as they arrive. Otherwise, if the status is full(2) and the bufferControlFullAction object is lockWhenFull, then the buffer has stopped collecting packets. When this object is set to full(2) the probe must not later set it to spaceAvailable(1) except in the case of a significant gain in resources such as an increase of bufferControlOctetsGranted. In particular, the wrap-mode action of deleting old packets to make room for newly arrived packets must not affect the value of this object." ::= { bufferControlEntry 3 } bufferControlFullAction OBJECT-TYPE SYNTAX INTEGER { lockWhenFull(1), wrapWhenFull(2) -- FIFO } MAX-ACCESS read-create STATUS current DESCRIPTION "Controls the action of the buffer when it reaches the full status. When in the lockWhenFull(1) state and a packet is added to the buffer that fills the buffer, the bufferControlFullStatus will be set to full(2) and this buffer will stop capturing packets." ::= { bufferControlEntry 4 } bufferControlCaptureSliceSize OBJECT-TYPE SYNTAX Integer32 UNITS "Octets" MAX-ACCESS read-create
STATUS current DESCRIPTION "The maximum number of octets of each packet that will be saved in this capture buffer. For example, if a 1500 octet packet is received by the probe and this object is set to 500, then only 500 octets of the packet will be stored in the associated capture buffer. If this variable is set to 0, the capture buffer will save as many octets as is possible. This object may not be modified if the associated bufferControlStatus object is equal to valid(1)." DEFVAL { 100 } ::= { bufferControlEntry 5 } bufferControlDownloadSliceSize OBJECT-TYPE SYNTAX Integer32 UNITS "Octets" MAX-ACCESS read-create STATUS current DESCRIPTION "The maximum number of octets of each packet in this capture buffer that will be returned in an SNMP retrieval of that packet. For example, if 500 octets of a packet have been stored in the associated capture buffer, the associated bufferControlDownloadOffset is 0, and this object is set to 100, then the captureBufferPacket object that contains the packet will contain only the first 100 octets of the packet. A prudent manager will take into account possible interoperability or fragmentation problems that may occur if the download slice size is set too large. In particular, conformant SNMP implementations are not required to accept messages whose length exceeds 484 octets, although they are encouraged to support larger datagrams whenever feasible." DEFVAL { 100 } ::= { bufferControlEntry 6 } bufferControlDownloadOffset OBJECT-TYPE SYNTAX Integer32 UNITS "Octets" MAX-ACCESS read-create STATUS current DESCRIPTION
"The offset of the first octet of each packet in this capture buffer that will be returned in an SNMP retrieval of that packet. For example, if 500 octets of a packet have been stored in the associated capture buffer and this object is set to 100, then the captureBufferPacket object that contains the packet will contain bytes starting 100 octets into the packet." DEFVAL { 0 } ::= { bufferControlEntry 7 } bufferControlMaxOctetsRequested OBJECT-TYPE SYNTAX Integer32 UNITS "Octets" MAX-ACCESS read-create STATUS current DESCRIPTION "The requested maximum number of octets to be saved in this captureBuffer, including any implementation-specific overhead. If this variable is set to -1, the capture buffer will save as many octets as is possible. When this object is created or modified, the probe should set bufferControlMaxOctetsGranted as closely to this object as is possible for the particular probe implementation and available resources. However, if the object has the special value of -1, the probe must set bufferControlMaxOctetsGranted to -1." DEFVAL { -1 } ::= { bufferControlEntry 8 } bufferControlMaxOctetsGranted OBJECT-TYPE SYNTAX Integer32 UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The maximum number of octets that can be saved in this captureBuffer, including overhead. If this variable is -1, the capture buffer will save as many octets as possible. When the bufferControlMaxOctetsRequested object is created or modified, the probe should set this object as closely to the requested value as is possible for the particular probe implementation and available resources. However, if the request object has the special value
of -1, the probe must set this object to -1. The probe must not lower this value except as a result of a modification to the associated bufferControlMaxOctetsRequested object. When this maximum number of octets is reached and a new packet is to be added to this capture buffer and the corresponding bufferControlFullAction is set to wrapWhenFull(2), enough of the oldest packets associated with this capture buffer shall be deleted by the agent so that the new packet can be added. If the corresponding bufferControlFullAction is set to lockWhenFull(1), the new packet shall be discarded. In either case, the probe must set bufferControlFullStatus to full(2). When the value of this object changes to a value less than the current value, entries are deleted from the captureBufferTable associated with this bufferControlEntry. Enough of the oldest of these captureBufferEntries shall be deleted by the agent so that the number of octets used remains less than or equal to the new value of this object. When the value of this object changes to a value greater than the current value, the number of associated captureBufferEntries may be allowed to grow." ::= { bufferControlEntry 9 } bufferControlCapturedPackets OBJECT-TYPE SYNTAX Integer32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of packets currently in this captureBuffer." ::= { bufferControlEntry 10 } bufferControlTurnOnTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when this capture buffer was first turned on."
::= { bufferControlEntry 11 } bufferControlOwner OBJECT-TYPE SYNTAX OwnerString MAX-ACCESS read-create STATUS current DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { bufferControlEntry 12 } bufferControlStatus OBJECT-TYPE SYNTAX EntryStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this buffer Control Entry." ::= { bufferControlEntry 13 } captureBufferTable OBJECT-TYPE SYNTAX SEQUENCE OF CaptureBufferEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A list of packets captured off of a channel." ::= { capture 2 } captureBufferEntry OBJECT-TYPE SYNTAX CaptureBufferEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A packet captured off of an attached network. As an example, an instance of the captureBufferPacketData object might be named captureBufferPacketData.3.1783" INDEX { captureBufferControlIndex, captureBufferIndex } ::= { captureBufferTable 1 } CaptureBufferEntry ::= SEQUENCE { captureBufferControlIndex Integer32, captureBufferIndex Integer32, captureBufferPacketID Integer32, captureBufferPacketData OCTET STRING, captureBufferPacketLength Integer32, captureBufferPacketTime Integer32, captureBufferPacketStatus Integer32 }