Tech-invite3GPPspaceIETFspace
96959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 2293

Representing Tables and Subtrees in the X.500 Directory

Pages: 8
Proposed Standard
Obsoletes:  1837

ToP   noToC   RFC2293 - Page 1
Network Working Group                                            S. Kille
Request for Comments: 2293                                     Isode Ltd.
Obsoletes: 1837                                                March 1998
Category: Standards Track


        Representing Tables and Subtrees in the X.500 Directory

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

   This document defines techniques for representing two types of
   information mapping in the OSI Directory [1].

   1.  Mapping from a key to a value (or set of values), as might
       be done in a table lookup.

   2.  Mapping from a distinguished name to an associated
       value (or values), where the values are not defined by the owner
       of the entry.  This is achieved by use of a directory subtree.

   These techniques were developed for supporting MHS use of Directory
   [2], but are specified separately as they have more general
   applicability.
ToP   noToC   RFC2293 - Page 2
1  Representing Flat Tables

   Before considering specific function, a general purpose technique for
   representing tables in the directory is introduced.  The schema for
   this is given in Figure 1.  A table can be considered as an unordered
   set of key to (single or multiple) value mappings, where the key
   cannot be represented as a global name.  There are four reasons why
   this may occur:

   1.  The object does not have a natural global name.

   2.  The object can only be named effectively in the context of
       being a key to a binding.  In this case, the object will be given
       a natural global name by the table.

   3.  The object has a global name, and the table is being used
       to associate parameters with this object, in cases where they
       cannot be placed in the objects global entry.  Reasons why they
       might not be so placed include:

        o  The object does not have a directory entry

        o  There is no authority to place the parameters in the
           global entry

        o  The parameters are not global --- they only make sense
           in the  context of the table.

   4.  It is desirable to group information together as a
       performance optimization, so that the block of information may be
       widely replicated.

   A table is represented as a single level subtree.  The root of the
   subtree is an entry of object class Table.  This is named with a
   common name descriptive of the table.  The table will be located
   somewhere appropriate to its function.  If a table is private to an
   MTA, it will be below the MTA's entry.  If it is shared by MTA's in
   an organization, it will be located under the organization.

   The generic table entry contains only a description.  All instances
   will be subclassed, and the subclass will define the naming
   attribute.  Two subclasses are defined:
ToP   noToC   RFC2293 - Page 3
table OBJECT-CLASS ::= {
    SUBCLASS OF {top}
    MUST CONTAIN {commonName}
    MAY CONTAIN {manager}
    ID oc-table}


tableEntry OBJECT-CLASS ::= {
    SUBCLASS OF {top}
    MAY CONTAIN {description}                                       10
    ID oc-table-entry}

textTableEntry OBJECT-CLASS ::= {
    SUBCLASS OF {tableEntry}
    MUST CONTAIN {textTableKey}
    MAY CONTAIN {textTableValue}
    ID oc-text-table-entry}

textTableKey ATTRIBUTE ::= {
    SUBTYPE OF name                                                 20
    WITH SYNTAX DirectoryString {ub-name}
    ID at-text-table-key}

textTableValue ATTRIBUTE ::= {
    SUBTYPE OF name
    WITH SYNTAX  DirectoryString {ub-description}
    ID at-text-table-value}

distinguishedNameTableEntry OBJECT-CLASS ::= {
    SUBCLASS OF {tableEntry}                                        30
    MUST CONTAIN {distinguishedNameTableKey}
    ID oc-distinguished-name-table-entry}

distinguishedNameTableKey ATTRIBUTE ::= {
    SUBTYPE OF distinguishedName
    ID at-distinguished-name-table-key}

                     Figure 1:  Representing Tables


   1.  TextEntry, which define table entries with text keys,
       which may have single or multiple values of any type.  An
       attribute is defined to allow a text value, to support the
       frequent text key to text value mapping.  Additional values may
       be defined.
ToP   noToC   RFC2293 - Page 4
   2.  DistinguishedNameEntry.  This is used for associating
       information with globally defined objects.  This approach should
       be used where the number of objects in the table is small or very
       sparsely spread over the DIT. In other cases where there are many
       objects or the objects are tightly clustered in the DIT, the
       subtree approach defined in Section 2 will be preferable.  No
       value attributes are defined for this type of entry.  An
       application of this will make appropriate subtyping to define the
       needed values.

   This is best illustrated by example.  Consider the MTA:

   CN=Bells, OU=Computer Science,
   O=University College London, C=GB

   Suppose that the MTA needs a table mapping from private keys to fully
   qualified domain names (this example is fictitious).  The table might
   be named as:

   CN=domain-nicknames,
   CN=Bells, OU=Computer Science,
   O=University College London, C=GB

   To represent a mapping in this table from "euclid" to
   "bloomsbury.ac.uk", the entry:

   TextTableKey=euclid, CN=domain-nicknames,
   CN=Bells, OU=Computer Science,
   O=University College London, C=GB

   will contain the attribute:

   TextTableValue=bloomsbury.ac.uk

   A second example, showing the use of DistinguishedNameEntry is now
   given.  Consider again the MTA:

   CN=Bells, OU=Computer Science,
   O=University College London, C=GB

   Suppose that the MTA needs a table mapping from MTA Name to bilateral
   agreement information of that MTA. The table might be named as:

   CN=MTA Bilateral Agreements,
   CN=Bells, OU=Computer Science,
   O=University College London, C=GB
ToP   noToC   RFC2293 - Page 5
   To represent information on the MTA which has the Distinguished Name:

   CN=Q3T21, ADMD=Gold 400, C=GB

   There would be an entry in this table with the Relative Distinguished
   Name of the table entry being the Distinguished Name of the MTA being
   referred to.  The MTA Bilateral information would be an attribute in
   this entry.  Using a non-standard notation, the Distinguished Name of
   the table entry is:

   DistinguishedNameTableKey=<CN=Q3T21, ADMD=Gold 400, C=GB>,
   CN=MTA Bilateral Agreements,
   CN=Bells, OU=Computer Science,
   O=University College London, C=GB

2  Representing Subtrees

   A subtree is similar to a table, except that the keys are constructed
   as a distinguished name hierarchy relative to the location of the
   subtree in the DIT. The subtree effectively starts a private "root",
   and has distinguished names relative to this root.  Typically, this
   approach is used to associate local information with global objects.
   The schema used is defined in Figure 2.  Functionally, this is
   equivalent to a table with distinguished name keys.  The table
   approach is best when the tree is very sparse.  This approach is
   better for subtrees which are more populated.

   The subtree object class defines the root for a subtree in an
   analogous means to the table.  Information within the subtree will
   generally be defined in the same way as for the global object, and so

   subtree OBJECT-CLASS ::= {
       SUBCLASS OF {top}
       MUST CONTAIN {commonName}
       MAY CONTAIN {manager}
       ID oc-subtree}

                     Figure 2:  Representing Subtrees


   no specific object classes for subtree entries are needed.

   For example consider University College London.

   O=University College London, C=GB
ToP   noToC   RFC2293 - Page 6
   Suppose that the UCL needs a private subtree, with interesting
   information about directory objects.  The table might be named as:

   CN=private subtree,
   O=University College London, C=GB

   UCL specific information on Inria might be stored in the entry:

   O=Inria, C=FR,
   CN=private subtree,
   O=University College London, C=GB

   Practical examples of this mapping are given in [2].

3  Acknowledgments

   Acknowledgments for work on this document are given in [2].

References

   [1] The Directory --- overview of concepts, models and services,
       1993. CCITT X.500 Series Recommendations.

   [2] Kille, S.E., "X.400-MHS use of the X.500 directory to support
       X.400-MHS routing," RFC 1801, June 1995.

4  Security Considerations

   Security considerations are not discussed in this memo.

5  Author's Address

   Steve Kille
   Isode Ltd
   The Dome
   The Square
   Richmond
   TW9 1DT
   England

   Phone:  +44-181-332-9091
   EMail:  S.Kille@ISODE.COM
ToP   noToC   RFC2293 - Page 7
A  Object Identifier Assignment


mhs-ds OBJECT IDENTIFIER ::= {iso(1) org(3) dod(6) internet(1)
          private(4) enterprises(1) isode-consortium (453) mhs-ds (7)}

tables OBJECT IDENTIFIER ::= {mhs-ds 1}

oc OBJECT IDENTIFIER ::= {tables 1}
at OBJECT IDENTIFIER ::= {tables 2}

oc-subtree OBJECT IDENTIFIER ::= {oc 1}
oc-table OBJECT IDENTIFIER ::= {oc 2}                               10
oc-table-entry OBJECT IDENTIFIER ::= {oc 3}
oc-text-table-entry OBJECT IDENTIFIER ::= {oc 4}
oc-distinguished-name-table-entry  OBJECT IDENTIFIER ::= {oc 5}

at-text-table-key OBJECT IDENTIFIER ::= {at 1}
at-text-table-value OBJECT IDENTIFIER ::= {at 2}
at-distinguished-name-table-key OBJECT IDENTIFIER ::= {at 3}

                Figure 3:  Object Identifier Assignment
ToP   noToC   RFC2293 - Page 8
Full Copyright Statement

   Copyright (C) The Internet Society (1998).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.