the ACCEPT message to the previous-hop along the same path traced by the CONNECT but in the reverse direction toward the origin. The ACCEPT should not be propagated until all HID negotiations with the next-hop agent(s) have been successfully completed. The FlowSpec is included in the ACCEPT message so that the origin and intermediate ST agents can gain access to the information that was accumulated as the CONNECT traversed the internet. Note that the resources, as specified in the FlowSpec in the ACCEPT message, may differ from the resources that were reserved by the agent when the CONNECT was Agent A Agent 1 Agent B +<-+<- ACCEPT B <-------<< [3.5] V | <RVLId=15><SVLId=44> 4.1. (wait for ACCEPTS) V <Ref=410><LnkRef=110> 4.2. V +-> ACK --------------->+ 4.3. (wait until HID negotiated)<-+ <RVLId=44><SVLId=15> V <Ref=410> 4.4. <<--+<-- ACCEPT B <---------+ <RVLId=4><SVLId=14> <Ref=115><LnkRef=10> Agent A Agent 2 Agent C +<-+<- ACCEPT C <------<< [3.10] | | <RVLId=25><SVLId=54> | V <Ref=510><LnkRef=210> 4.5. | +-> ACK --------------->+ | <Ref=510> | <RVLId=54><SVLId=25> | | Agent D V +<-+<- ACCEPT D <------<< [3.15] V | <RVLId=26><SVLId=64> 4.6. (wait for ACCEPTS) V <Ref=610><LnkRef=215> 4.7. V +-> ACK --------------->+ 4.8. (wait until HID negotiated)<-+ <RVLId=64><SVLId=26> V <Ref=610> 4.9. <<--+<- ACCEPT C <----------+ <RVLId=5><SVLId=23> | <Ref=220><LnkRef=15>| V 4.10. <<--+<- ACCEPT D <----------+ <RVLId=5><SVLId=23> <Ref=225><LnkRef=15> Figure 8. ACCEPT Processing by an Intermediate Agent
originally processed. However, the agent does not adjust the reservation in response to the ACCEPT. It is expected that any excess resource allocation will be released for use by other stream or datagram traffic through an explicit CHANGE message initiated by the application at the origin if it does not wish to be charged for any excess resource allocations. 3.1.8. ACCEPT Processing by the Origin The origin will eventually receive an ACCEPT (or REFUSE or ERROR-IN-REQUEST) message from each of the targets. As each ACCEPT is received, the application should be notified of the target and the resources that were successfully allocated along the path to it, as specified in the FlowSpec contained in the ACCEPT message. The application may then use the information to either adopt or terminate the portion of the stream to each target. When ACCEPTs (or failures) from all targets have been received at the origin, the application is notified that stream setup is complete, and that data may be sent. Application A Agent A Agent 1 Agent 2 +<-- ACCEPT B <--------<< [4.4] | <RVLId=4><SVLId=14> V <Ref=115><LnkRef=10> 5.1. +--> ACK ----------------->+ | <RVLId=14><SVLId=4> V <Ref=115> 5.2. +<-- (inform A of B's FlowSpec) | +<-- ACCEPT C <----------------<< [4.9] | | <RVLId=5><SVLId=23> | V <Ref=220><LnkRef=15> 5.3. | +--> ACK ------------------------->+ | | <RVLId=23><SVLId=5> | V <Ref=220> 5.4. +<-- (inform A of C's FlowSpec) | +<-- ACCEPT D <----------------<< [4.10] | | <RVLId=5><SVLId=23> | V <Ref=225><LnkRef=15> 5.5. | +--> ACK ------------------------->+ | | <RVLId=23><SVLId=5> | V <Ref=225> 5.6. +<-- (inform A of D's FlowSpec) V 5.7. (wait until HIDs negotiated) V 5.8. (inform A open to B,C,D) Figure 9. ACCEPT Processing by the Origin
There are several pieces of information contained in the FlowSpec that the application must combine before sending data through the stream. The PDU size should be computed from the minimum value of the DesPDUBytes field from all ACCEPTs and the protocol layers above ST should be informed of the limit. It is expected that the next higher protocol layer above ST will segment its PDUs accordingly. Note, however, that the MTU may decrease over the life of the stream if new targets are subsequently added. Whether the MTU should be increased as targets are dropped from a stream is left for further study. The available bandwidth and packet rate limits must also be combined. In this case, however, it may not be possible to select a pair of values that may be used for all paths, e.g., one path may have selected a low rate of large packets while another selected a high rate of small packets. The application may remedy the situation by either tearing down the stream, dropping some participants, or creating a second stream. After any differences have been resolved (or some targets have been deleted by the application to permit resolution), the application at the origin should send a CHANGE message to release any excess resources along paths to those targets that exceed the resolved parameters for the stream, thereby reducing the costs that will be incurred by the stream. 3.1.9. Processing a REFUSE Message REFUSE messages are used to indicate a failure to reach an application at a target; they are propagated toward the origin of a stream. They are used in three situations: 1 during stream setup or expansion to indicate that there is no satisfactory path from an ST agent to a target, 2 when the application at the target either does not exist does not wish to be a participant, or wants to cease being a participant, and 3 when a failure has been detected and the agents are trying to find a suitable path around the failure. The cases are distinguished by the ReasonCode field and an agent receiving a REFUSE message must examine that field in order to determine the proper action to be taken. In particular, if the ReasonCode indicates that the CONNECT message reached the target then the REFUSE should be propagated back to the origin, releasing resources as appropriate along the way. If the ReasonCode indicates that
the CONNECT message did not reach the target then the intermediate (origin) ST agent(s) should check for alternate routes to the target before propagating the REFUSE back another hop toward the origin. This implies that an agent must keep track of the next-hops that it has tried, on a target by target basis, in order not to get caught in a loop. An ST agent that receives a REFUSE message must acknowledge it by sending an ACK to the next-hop. The REFUSE must also be propagated back to the previous-hop ST agent. Note that the ST agent may not have any information about the target in Appl. Agent A Agent 2 Agent E (proc E NOT listening) 1. (add E) 2. +----->+-> CONNECT E ---------->+->+ <RVLId=23><SVLId=5> | | <Ref=65> V | 3. +<-- ACK <---------------+ | <RVLId=5><SVLId=23> V 4. <Ref=65> (routing to E) V 5. (reserve resources 2 to E) V 6. +--> CONNECT E --------->+ <RVLId=0><SVLId=27> | <Ref=115><HID=4600> | V 7. +<-+<- REFUSE B <-----------+ | | <RVLId=27><SVLId=74> | | <Ref=705><LnkRef=115> | V <RC=SAPUnknown> 8. | +-> ACK ---------------->+ | | <RVLId=74><SVLId=27> | | V <Ref=705> | 9. | (free link 27) V 10. V (free link 74) 11. +<- REFUSE B <-----------+ | <RVLId=5><SVLId=23> | | <Ref=550><LnkRef=65> V 12. | <RC=SAPUnknown> (free resources 2 to E) V 13. +-> ACK --------------->+ | <RVLId=23><SVLId=5> | | <Ref=550> V 14. V (keep link 23 for C,D) 15. (keep link 5 for C,D) V 16. (inform application failed SAPUnknown) Figure 10. Sending REFUSE Message
the TargetList. This may result from interacting DISCONNECT and REFUSE messages and should be logged and silently ignored. If, after deleting the specified target, the next-hop has no remaining targets, then those resources associated with that next-hop agent may be released. Note that network resources may not actually be released if network multicasting is being Appl. Agent A Agent 2 Agent 1 Agent 3 Agent B 1. (network from 1 to B fails) 2. (add B) 3. +-> CONNECT B ----------------->+ <RVLId=0><SVLId=6> | <Ref=35><HID=100> | 3. +<- HID-APPROVE <---------------+ <RVLId=6><SVLId=11> | <Ref=35><HID=100> V 4. (routing to B: no route) V 5. +<-+-- REFUSE B ----------------+ | | <RVLId=6><SVLId=11> | | <Ref=155><LnkRef=35> | V <RC=NoRouteToDest> 6. | +-> ACK -------------------->+ | | <RVLId=11><SVLId=6> V 7. | V <Ref=155> (drop link 6) 8. V (drop link 11) 9. (find alternative route: via agent 2) 10. (resources from A to 2 already allocated: V reuse control link & HID, no additional resources required) 11. +-> CONNECT B -------->+->+ <RVLId=23><SVLId=5>| | <Ref=40> V | 12. +<- ACK <--------------+ | <RVLId=5><SVLId=23> V 13. <Ref=40> (routing to B: via agent 3) V 14. +-> CONNECT B -->+ 15. <RVLId=0><SVLId=24> +-> CONNECT B --------->+ <Ref=245><HID=4801> V <RVLId=0><SVLId=32> | 16. +<- HID-APPROVE -+ <Ref=310><HID=6000> | <RVLId=24><SVLId=33> | <Ref=245><HID=4801> V 17. +<- HID-APPROVE --------+ <RVLId=32><SVLId=45>| <Ref=310><HID=6000> V 18. (ACCEPT handling follows normally to complete stream setup) Figure 11. Routing Around a Failure
used since they may still be required for traffic to other next-hops in the multicast group. When the REFUSE reaches a origin, the origin sends an ACK and notifies the application via the next higher layer protocol that the target listed in the TargetList is no longer part of the stream and also if the stream has no remaining targets. If there are no remaining targets, the application may wish to terminate the stream. Figure 10 illustrates the protocol exchanges for processing a REFUSE generated at the target, either because the target application is not running or that the target application rejects membership in the stream. Figure 11 illustrates the case of rerouting around a failure by an intermediate agent that detects a failure or receives a refuse. The protocol exchanges used by an application at the target to delete itself from the stream is discussed in Section 3.3.3 (page 35). 3.2. Data Transfer At the end of the connection setup phase, the origin, each target, and each intermediate ST agent has a database entry that allows it to forward the data packets from the origin to the targets and to recover from failures of the intermediate agents or networks. The database should be optimized to make the packet forwarding task most efficient. The time critical operation is an intermediate agent receiving a packet from the previous-hop agent and forwarding it to the next-hop agent(s). The database entry must also contain the FlowSpec, utilization information, the address of the origin and previous-hop, and the addresses of the targets and next-hops, so it can perform enforcement and recover from failures. An ST agent receives data packets encapsulated by an ST header. A data packet received by an ST agent contains the non-zero HID assigned to the stream for the branch from the previous-hop to itself. This HID was selected so that it is unique at the receiving ST agent and thus can be used, e.g., as an index into the database, to obtain quickly the necessary replication and forwarding information. The forwarding information will be network and implementation specific, but must identify the next-hop agent or agents and their respective HIDs. It is suggested that the cached information for a next-hop agent include the local network address of the next- hop. If the data packet must be forwarded to multiple next-hops across a single network that supports multicast, the database may specify a single HID and may identify the next-hops by a (local network) multicast address.
If the network does not support multicast, or the next-hops are on different networks, then the database must indicate multiple (next-hop, HID) tuples. When multiple copies of the data packet must be sent, it may be necessary to invoke a packet replicator. Data packets should not require fragmentation as the next higher protocol layer at the origin was informed of the minimum MTU over all paths in the stream and is expected to segment its PDUs accordingly. However, it may be the case that a data packet that is being rerouted around a failed network component may be too large for the MTU of an intervening network. This should be a transient condition that will be corrected as soon as the new minimum MTU has been propagated back to the origin. Disposition by a mechanism other than dropping of the too large PDUs is left for further study. 3.3. Modifying an Existing Stream Some applications may wish to change the parameters of a stream after it has been created. Possible changes include adding or deleting targets and changing the FlowSpec. These are described below. 3.3.1. Adding a Target It is possible for an application to add a new target to an existing stream any time after ST has incorporated information about the stream into its database. At a high level, the application entities exchanges whatever information is necessary. Although the mechanism or protocol used to accomplish this is not specified here, it is necessary for the higher layer protocol to inform the host ST agent at the origin of this event. The host ST agent at the target must also be informed unless this had previously been done. Generally, the transfer of a target list from an ST agent to another, or from a higher layer protocol to a host ST agent, will occur atomically when the CONNECT is received. Any information concerning a new target received after this point can be viewed as a stream expansion by the receiving ST agent. However, it may be possible that an ST agent can utilize such information if it is received before it makes the relevant routing decisions. These implementation details are not specified here, but implementations must be prepared to receive CONNECT messages that represent expansions of streams that are still in the process of being setup. To expand an existing stream, the origin issues one or more CONNECT messages that contain the Name, the VLId, the FlowSpec, and the TargetList specifying the new target or targets. The origin issues multiple CONNECT messages if
either the targets are to be reached through different next-hop agents, or a single CONNECT message is too large for the network MTU. The HID Field option is not set since the HID has already been (or is being) negotiated for the hop; consequently, the CONNECT is acknowledged with an ACK instead of a HID-REJECT or HID-APPROVE. Application Agent A Agent 2 Agent E 1. (open E) 2. V (proc E listening) 3. +->(routing to E) V 4. +-> (check resources from A to Agent 2: already allocated, V reuse control link & HID, no additional resources needed) 5. +-> CONNECT E --------->+->+ <RVLId=23><SVLId=5> | V 6. <Ref=20> V (routing to E) 7. +<- ACK <---------------+ V <RVLId=5><SVLId=23> +->(reserve resources 2 to E) <Ref=20> V 8. +-> CONNECT E --------->+ <RVLId=0><SVLId=27> | <Ref=230><HID=4800> | 9. +<- HID-APPROVE <-------+ <RVLId=27><SVLId=74>| <Ref=230><HID=4800> V 10. (proc E accepts) 11. (wait until HID negotiated) V 12. +<-+<- ACCEPT E <----------+ V | <RVLId=27><SVLId=74> 13. (wait for ACCEPTS) V <Ref=710><LnkRef=230> 14. V +-> ACK --------------->+ 15. (wait until HID negotiated)<-+ <RVLId=74><SVLId=27> V <Ref=710> 16. +<- ACCEPT E <-------+ | <RVLId=5><SVLId=23> V <Ref=235><LnkRef=20> 17. +-> ACK ------------>+ | <RVLId=23><SVLId=5> V <Ref=235> 18. +<-(inform A of E's FlowSpec) V 19. +<-(wait for ACCEPTS) V 20. +<-(wait until HID negotiated) V 21. (inform A open to E) Figure 12. Addition of Another Target
An ST agent that is already a node in the stream recognizes the RVLId and verifies that the Name of the stream is the same. It then checks if the intersection of the TargetList and the targets of the established stream is empty. If this is not the case, then the receiver responds with an ERROR-IN-REQUEST with the appropriate reason code (RouteLoop) that contains a TargetList of those targets that were duplicates; see Section 4.2.3.5 (page 106). For each new target in the TargetList, processing is much the same as for the original CONNECT; see Sections 3.1.2-4 (pages 19-20). The CONNECT must be acknowledged, propagated, and network resources must be reserved. However, it may be possible to route to the new targets using previously allocated paths or an existing multicast group. In that case, additional resources do not need to be reserved but more next-hop(s) might have to be added to an existing multicast group. Nevertheless, the origin, or any intermediate ST agent that receives a CONNECT for an existing stream, can make a routing decision that is independent of any it may have made previously. Depending on the routing algorithm that is used, the ST agent may decide to reach the new target by way of an established branch, or it may decide to create a new branch. The fact that a new target is being added to an existing stream may result in a suboptimal overall routing for certain routing algorithms. We take this problem to be unavoidable since it is unlikely that the stream routing can be made optimal in general, and the only way to avoid this loss of optimality is to redefine the routing of potentially the entire stream, which would be too expensive and time consuming. 3.3.2. The Origin Removing a Target The application at the origin specifies a set of targets that are to be removed from the stream and an appropriate reason code (ApplDisconnect). The targets are partitioned into multiple DISCONNECT messages based on the next-hop to the individual targets. As with CONNECT messages, an ST agent that is sending a DISCONNECT must make sure that the message fits into the MTU for the intervening network. If the message is too large, the TargetList must be further partitioned into multiple DISCONNECT messages. An ST agent that receives a DISCONNECT message must acknowledge it by sending an ACK back to the previous-hop. The DISCONNECT must also be propagated to the relevant next-hop ST agents. Before propagating the message, however, the TargetList should be partitioned based on next-hop ST
agent and MTU, as described above. Note that there may be targets in the TargetList for which the ST agent has no information. This may result from interacting DISCONNECT and REFUSE messages and should be logged and silently ignored. If, after deleting the specified targets, any next-hop has no remaining targets, then those resources associated with that next-hop agent may be released. Note that network resources may not actually be released if network multicasting is being used since they may still be required for traffic to other next-hops in the multicast group. Application Application Agent A Agent 1 Agent 2 Agent B C 1. (close B,C ApplDisconnect) V 2. +->+-+-> DISCONNECT B ----->+ 3. | | <RVLId=14><SVLId=4>+-+-> DISCONNECT B ------>+ | | <Ref=25> | | <RVLId=44><SVLId=15>| | V <RC=ApplDisconnect>| | <Ref=120> | 4. | (free A to 1 resrc.) | V <RC=ApplDisconnect> | 5. | V (free 1 to B resrc.) | 6. | +<- ACK <--------------+ V 7. | | <RVLId=4><SVLId=14>| +<- ACK <---------------+ | V <Ref=25> | | <RVLId=15><SVLId=44>| 8. | (free link 4) V | <Ref=120> | 9. | (free link 14) V | 10. | (free link 15) V 11. | (inform B that stream closed ApplDisconnect) 12. | (free link 44) V 13. +<-+-+-> DISCONNECT C ---------->+ 14. | | <RVLId=23><SVLId=5> +-+-> DISCONNECT C ------>+ | | <Ref=30> | | <RVLId=54><SVLId=25>| | V <RC=ApplDisconnect> | | <Ref=240> | 15. | (keep A to 2 resrc for | V <RC=ApplDisconnect> | 16. | data going to D,E) | (free 2 to C resrc.) | | V | 17. | +<- ACK <-------------------+ V 18. | | <RVLId=5><SVLId=23> | +<- ACK <---------------+ | V <Ref=30> | | <RVLId=25><SVLId=54>| 19. | (keep link 5 for D,E) V | <Ref=240> | 20. | (keep link 23 for D,E) V | 21. | (free link 25) V 22. | (inform C that stream closed ApplDisconnect>) 23. V (free link 54) 24. (inform A closed to B,C ApplDisconnect) Figure 13. Origin Removing a Target
When the DISCONNECT reaches a target, the target sends an ACK and notifies the application that it is no longer part of the stream and the reason. The application should then inform ST to terminate the stream, and ST should delete the stream from its database after performing any necessary management and accounting functions. 3.3.3. A Target Deleting Itself The application at the target may inform ST that it wants to be removed from the stream and the appropriate reason code (ApplDisconnect). The agent then forms a REFUSE message with itself as the only entry in the TargetList. The REFUSE is sent back to the origin via the previous-hop. If a stream has multiple targets and one target leaves the stream using this REFUSE mechanism, the stream to the other targets is not affected; the stream continues to exist. An ST agent that receives such a REFUSE message must acknowledge it by sending an ACK to the next-hop. The target is deleted and, if the next-hop has no remaining targets, then the those resources associated with that next-hop agent may be released. Note that network resources may not actually be released if network multicasting is being used since they may still be required for traffic to other next-hops in the multicast group. The REFUSE must also be propagated back to the previous-hop ST agent. Agent A Agent 2 Agent E 1. (close E ApplDisconnect) V 2. +<- REFUSE E --+ | <RVLId=27><SVLId=74> | <Ref=720> V <RC=ApplDisconnect> 3. +<-+-> ACK ------>+ | | <RVLId=74><SVLId=27> 4. V V <Ref=720> 5. +<-+<- REFUSE E --+ (prune allocations) | | <RVLId=5><SVLId=23> | | <Ref=245> | V <RC=ApplDisconnect> 6. | +-> ACK ------>+ | | <RVLId=23><SVLId=5> | V <Ref=245> 7. V (prune allocations) 8. (inform application closed E ApplDisconnect) Figure 14. Target Deleting Itself
When the REFUSE reaches the origin, the origin sends an ACK and notifies the application that the target listed in the TargetList is no longer part of the stream. If the stream has no remaining targets, the application may choose to terminate the stream. 3.3.4. Changing the FlowSpec An application may wish to change the FlowSpec of an established stream. To do so, it informs ST of the new FlowSpec and the list of targets that are to be changed. The origin ST agent then issues one or more CHANGE messages with the new FlowSpec and sends them to the relevant next-hop agents. CHANGE messages are structured and processed similarly to CONNECT messages. A next-hop agent that is an intermediate agent and receives a CHANGE message similarly determines if it can implement the new FlowSpec along the hop to each of its next-hop agents, and if so, it propagates the CHANGE messages along the established paths. If this process succeeds, the CHANGE messages will eventually reach the targets, which will each respond with an ACCEPT message that is propagated back to the origin. Note that since a CHANGE may be sent containing a FlowSpec with a range of permissible values for bandwidth, delay, and/or error rate, and the actual values returned in the ACCEPTs may differ, then another CHANGE may be required to release excess resources along some of the paths. 3.4. Stream Tear Down A stream is usually terminated by the origin when it has no further data to send, but may also be partially torn down by the individual targets. These cases will not be further discussed since they have already been described in Sections 3.3.2-3 (pages 33-35). A stream is also torn down if the application should terminate abnormally. Processing in this case is identical to the previous descriptions except that the appropriate reason code is different (ApplAbort). When all targets have left a stream, the origin notifies the application of that fact, and the application then is responsible for terminating the stream. Note, however, that the application may decide to add a target(s) to the stream instead of terminating it.
3.5. Exceptional Cases The previous descriptions covered the simple cases where everything worked. We now discuss what happens when things do not succeed. Included are situations where messages are lost, the requested resources are not available, the routing fails or is inconsistent. In order for the ST Control Message Protocol to be reliable over an unreliable internetwork, the problems of corruption, duplication, loss, and ordering must be addressed. Corruption is handled through use of checksumming, as described in Section 4 (page 76). Duplication of control messages is detected by assigning a transaction number (Reference) to each control message; duplicates are discarded. Loss is detected using a timeout at the sender; messages that are not acknowledged before the timeout expires are retransmitted; see Section 3.7.6 (page 66). If a message is not acknowledged after a few retransmissions a fault is reported. The protocol does not have significant ordering constraints. However, minor sequencing of control messages for a stream is facilitated by the requirement that the Reference numbers be monotonically increasing; see Section 4.2 (page 78). 3.5.1. Setup Failure due to CONNECT Timeout If a response (an ERROR-IN-REQUEST, an ACK, a HID-REJECT, or a HID-APPROVE) has not been received within time ToConnect, the ST agent should retransmit the CONNECT message. If no response has been received within NConnect retransmissions, then a fault occurs and a REFUSE message with the appropriate reason code (RetransTimeout) is sent back in the direction of the origin, and, in place of the CONNECT, a DISCONNECT is sent to the next-hop (in case the response to the CONNECT is the message that was lost). The agent will expect an ACK for both the REFUSE and the DISCONNECT messages. If it does not receive an ACK after retransmission time ToRefuse and ToDisconnect respectively, it will resend the REFUSE/DISCONNECT message. If it does not receive ACKs after sending NRefuse/ NDisconnect consecutive REFUSE/DISCONNECT messages, then it simply gives up trying.
Sending Agent Receiving Agent 1. ->+----> CONNECT X ------>//// (message lost or garbled) | <RVLId=0><SVLId=99> V <Ref=1278><HID=1234> 2. (timeout) V 3. +----> CONNECT X ------------>+ 4. | <RVLId=0><SVLId=99> +----> CONNECT X ----------->+ | <Ref=1278><HID=1234> V <RVLId=0><SVLId=1010> | 5. | //<- HID-APPROVE <----------+ <Ref=6666><HID=6666> V 6. | <RVLId=99><SVLId=88> +<- HID-APPROVE <---------+ V <Ref=1278><HID=1234> <RVLId=1010><SVLId=1111> 7. (timeout) <Ref=6666><HID=6666> V 8. +----> CONNECT X ------------>+ <RVLId=0><SVLId=99> | <Ref=1278><HID=1234> V 9. +<-+<- HID-APPROVE <----------+ | <RVLId=99><SVLId=88> V <Ref=1278><HID=1234> (cancel timer) Figure 15. CONNECT Retransmission after a Timeout 3.5.2. Problems due to Routing Inconsistency When an intermediate agent receives a CONNECT, it selects the next-hop agents based on the TargetList and the networks to which it is connected. If the resulting next-hop to any of the targets is across the same network from which it received the CONNECT (but not the previous-hop itself), there may be a routing problem. However, the routing algorithm at the previous-hop may be optimizing differently than the local algorithm would in the same situation. Since the local ST agent cannot distinguish the two cases, it should permit the setup but send back to the previous-hop agent an informative NOTIFY message with the appropriate reason code (RouteBack), pertinent TargetList, and in the NextHopIPAddress element the address of the next-hop ST agent returned by its routing algorithm. The agent that receives such a NOTIFY should ACK it. If the agent is using an algorithm that would produce such behavior, no further action is taken; if not, the agent should send a DISCONNECT to the next-hop agent to correct the problem. Alternatively, if the next-hop returned by the routing function is in fact the previous-hop, a routing inconsistency has been detected. In this case, a REFUSE is sent back to
the previous-hop agent containing an appropriate reason code (RouteInconsist), pertinent TargetList, and in the NextHopIPAddress element the address of the previous-hop. When the previous-hop receives the REFUSE, it will recompute the next-hop for the affected targets. If there is a difference in the routing databases in the two agents, they may exchange CONNECT and REFUSE messages again. Since such routing errors in the internet are assumed to be temporary, the situation should eventually stabilize. 3.5.3. Setup Failure due to a Routing Failure It is possible for an agent to receive a CONNECT message that contains a known Name, but from an agent other than the previous-hop agent of the stream with that Name. This may be: 1 that two branches of the tree forming the stream have joined back together, 2 a deliberate source routing loop, 3 the result of an attempted recovery of a partially failed stream, or 4 an erroneous routing loop. The TargetList is used to distinguish the cases 1 and 2 (see also Section 4.2.3.5 (page 107)) by comparing each newly received target with those of the previously existing stream: o if the IP address of the targets differ, it is case 1; o if the IP address of the targets match but the source route(s) are different, it is case 2; o if the target (including any source route) matches a target (including any source route) in the existing stream, it may be case 3 or 4. It is expected that the joining of branches will become more common as routing decisions are based on policy issues and not just simple connectivity. Unfortunately, there is no good way to merge the two parts of the stream back into a single stream. They must be treated independently with respect to processing in the agent. In particular, a separate state machine is required, the Virtual Link Identifiers and HIDs from the previous-hops and to the next-hops must be different, and duplicate resources must be reserved in both the agent and in any next-hop networks. Processing is the same for a deliberate source routing loop.
The remaining cases requiring recovery, a partially failed stream and an erroneous routing loop, are not easily distinguishable. In attempting recovery of a failed stream, an agent may issue new CONNECT messages to the affected targets; for a full explanation see also Section 3.7.2 (page 51), Failure Recovery. Such a CONNECT may reach an agent downstream of the failure before that agent has received a DISCONNECT from the neighborhood of the failure. Until that agent receives the DISCONNECT, it cannot distinguish between a failure recovery and an erroneous routing loop. That agent must therefore respond to the CONNECT with a REFUSE message with the affected targets specified in the TargetList and an appropriate reason code (StreamExists). The agent immediately preceding that point, i.e., the latest agent to send the CONNECT message, will receive the REFUSE message. It must release any resources reserved exclusively for traffic to the listed targets. If this agent was not the one attempting the stream recovery, then it cannot distinguish between a failure recovery and an erroneous routing loop. It should repeat the CONNECT after a ToConnect timeout. If after NConnect retransmissions it continues to receive REFUSE messages, it should propagate the REFUSE message toward the origin, with the TargetList that specifies the affected targets, but with a different error code (RouteLoop). The REFUSE message with this error code (RouteLoop) is propagated by each ST agent without retransmitting any CONNECT messages. At each agent, it causes any resources reserved exclusively for the listed targets to be released. The REFUSE will be propagated to the origin in the case of an erroneous routing loop. In the case of stream recovery, it will be propagated to the ST agent that is attempting the recovery, which may be an intermediate agent or the origin itself. In the case of a stream recovery, the agent attempting the recovery may issue new CONNECT messages to the same or to different next-hops. If an agent receives both a REFUSE message and a DISCONNECT message with a target in common then it can release the relevant resources and propagate neither the REFUSE nor the DISCONNECT (however, we feel that it is unlikely that most implementations will be able to detect this situation). If the origin receives such a REFUSE message, it should attempt to send a new CONNECT to all the affected targets. Since routing errors in an internet are assumed to be temporary, the new CONNECTs will eventually find acceptable routes to the targets, if one exists. If no further routes exist after NRetryRoute tries, the application should be
informed so that it may take whatever action it deems necessary. 3.5.4. Problems in Reserving Resources If the network or ST agent resources are not available, an ST agent may preempt one or more streams that have lower precedence than the one being created. When it breaks a lower precedence stream, it must issue REFUSE and DISCONNECT messages as described in Sections 4.2.3.15 (page 122) and 4.2.3.6 (page 110). If there are no streams of lower precedence, or if preempting them would not provide sufficient resources, then the stream cannot be accepted by the ST agent. If an intermediate agent detects that it cannot allocate the necessary resources, then it sends a REFUSE that contains an appropriate reason code (CantGetResrc) and the pertinent TargetList to the previous-hop ST agent. For further study are issues of reporting what resources are available, whether the resource shortage is permanent or transitory, and in the latter case, an estimate of how long before the requested resources might be available. 3.5.5. Setup Failure due to ACCEPT Timeout An ST agent that propagates an ACCEPT message backward toward the origin expects an ACK from the previous-hop. If it does not receive an ACK within a timeout, called ToAccept, it will retransmit the ACCEPT. If it does not receive an ACK after sending a number, called NAccept, of ACCEPT messages, then it will replace the ACCEPT with a REFUSE, and will send a DISCONNECT in the direction toward the target. Both the REFUSE and DISCONNECT will identify the affected target(s) and specify an appropriate reason code (AcceptTimeout). Both are also retransmitted until ACKed with timeout ToRefuse/ ToDisconnect and retransmit count NRefuse/NDisconnect. If they are not ACKed, the agent simply gives up, letting the failure detection mechanism described in Section 3.7.1 (page 48) take care of any cleanup.
3.5.6. Problems Caused by CHANGE Messages An application must exercise care when changing a FlowSpec to prevent a failure. A CHANGE might fail for two reasons. The request may be for a larger amount of network resources when those resources are not available; this failure may be prevented by requiring that the current level of service be contained within the ranges of the FlowSpec in the CHANGE. Alternatively, the local network might require all the former resources to be released before the new ones are requested and, due to unlucky timing, an unrelated request for network resources might be processed between the time the resources are released and the time the new resources are requested, so that the former resources are no longer available. There is not much that an application or ST can do to prevent such failures. If the attempt to change the FlowSpec fails then the ST agent where the failure occurs must intentionally break the stream and invoke the stream recovery mechanism using REFUSE and DISCONNECT messages; see Section 3.7.2 (page 51). Note that the reserved resources after the failure of a CHANGE may not be the same as before, i.e., the CHANGE may have been partially completed. The application is responsible for any cleanup (another CHANGE). 3.5.7. Notification of Changes Forced by Failures NOTIFY is issued by a an ST Agent to inform upsteam agents and the origin that resource allocation changes have occurred after a stream was established. These changes occur when network components fail and when competing streams preempt resources previously reserved by a lower precedence stream. We also anticipate that NOTIFY can be used in the future when additional resources become available, as is the case when network components recover or when higher precedence streams are deleted. NOTIFY is also used to inform upstream agents that a routing anomaly has occurred. Such an example was cited in Section 3.5.2 (page 38), where an agent notices that the next-hop agent is on the same network as the previous-hop agent; the anomaly is that the previous-hop should have connected directly to the next-hop without using an intermediate agent. Delays in propagating host status and routing information can cause such anomalies to occur. NOTIFY allows ST to correct automatically such mistakes. NOTIFY reports a FlowSpec that reflects that revised guarantee that can be promised to the stream. NOTIFY also
identifies those targets affected by the change. In this way, NOTIFY is similar to ACCEPT. NOTIFY includes a ReasonCode to identify the event that triggered the notification. It also includes a TargetList, rather than a single Target, since a single event can affect a branch leading to several targets. NOTIFY is relayed by the ST agents back toward the origin, along the path established by the CONNECT but in the reverse direction. NOTIFY must be acknowledged with an ACK at each hop. If intermediate agent corrects the situation without causing any disruption to the data flow or guarantees, it can choose to drop the notification message before it reaches the origin. If the originating agent receives a NOTIFY, it is then expected to adjust its own processing and data rates, and to submit any required CHANGE requests. As with ACCEPT, the FlowSpec is not modified on this trip from the target back to the origin. It is up to the origin to decide whether a CHANGE should be submitted. (However, even though the FlowSpec has not been modified, the situation reported in the Application Agent A Agent 1 Agent B 1. (high precedence request preempts 10K of the stream's original 30Kb bandwidth allocated to the hop from 1 to B) | V 2. +<------+-- NOTIFY -------------+ | | <RVLId=4><SVLId=14> | | <Ref=150> | V <FlowSpec=20Kb,...><TargList=B> 3. | +-> ACK --------------->+ | <RVLId=14><SVLId=4> V <Ref=150> 4. (inform application) .... 5. change(FlowSpec=20Kb,...) V 6. +---------> CHANGE B ---------->+ 7. <RVLId=14><SVLId=4> +--> CHANGE B ------------>+->+ <Ref=60> | <RVLId=44><SVLId=15> | | <FlowSpec=20Kb,...> V <Ref=160> | | 8. +<- ACK ----------------+ <FlowSpec=20Kb,...> | | <RVLId=4><SVLId=14> V | 9. <Ref=60> +--- ACK ------------------+ | <RVLId=15><SVLId=44> | <Ref=160> V ... perform normal ACCEPT processing ... <-----+ Figure 16. Processing NOTIFY Messages
notify may have prevented the ST agents from meeting the original guarantees.) 3.6. Options Several options are defined in the CONNECT message. The special processing required to support each will be described in the following sections. The options are independent, i.e., can be set to one (1, TRUE) or zero (0, FALSE) in any combination. However, the effect and implementation of the options is NOT necessarily independent, and not all combinations are supported. 3.6.1. HID Field Option The sender of a CONNECT message may or not specify an HID in the HID field. If the HID Field option of the CONNECT message is not set (the H bit is 0), then the HID field does not contain relevant information and should be ignored. If this option is set (the H bit is 1), then the HID field contains a relevant value. If this option is set and the HID field of the CONNECT contains a non-zero value, that value represents a proposed HID that initiates the HID negotiation. If the HID Field option is set but the HID field of the CONNECT message contains a zero, this means that the sender of that CONNECT message has chosen to defer selection of the HID to the next-hop agent (the receiver of a CONNECT message). This choice can allow a more efficient mechanism for selecting HIDs and possibly a more efficient mechanism for forwarding data packets in the case when the previous-hop does not need to select the HID; see also Section 4.2.3.5 (page 105). Upon receipt of a CONNECT message with the HID Field option set and the HID field set to zero, a next-hop agent selects the HID for the hop, enters it into its appropriate data structure, and returns it in the HID field of the HID-APPROVE message. The previous-hop takes the HID from the HID-APPROVE message and enters it into its appropriate data structure. 3.6.2. PTP Option The PTP option (Point-to-Point) is used to indicate that the stream will never have more than a single target. It consequently implies that the stream will never need to support any form of multicasting. Use of the PTP option may thus allow efficiencies in the way the stream is built or is
managed. Specifically, the ST agents do not need to request that the intervening networks allocate multicast groups to support this stream. The PTP option can only be set to one (1) by the origin, and must be the same for the entire stream (i.e., propagated by ST agents). The details of what this option does are implementation specific, and do not affect the protocol very much. If the application attempts to add a new target to an existing stream that was created with the PTP option set to one (1), the application should be informed of the error with an ERROR-IN- REQUEST message with the appropriate reason code. If a CONNECT is received whose TargetList contains more than a single entry, an ERROR-IN-REQUEST message with the appropriate reason code (PTPError) should be returned to the previous-hop agent (note that such a CONNECT should never be received if the origin both implements the PTP option and is functioning properly). As implied in the last paragraph, a subsetted implementation might choose not to implement the PTP option. 3.6.3. FDx Option The FDx option is used to indicate that a second stream in the reverse direction, from the target to the origin, should automatically be created. This option is most likely to be used when the TargetList has only a single entry. If used when the TargetList has multiple entries, the resulting streams would allow bi-directional communication between the origin and the various targets, but not among the targets. The FDx option can only be invoked by the origin, and must be propagated by intermediate agents. This option is specified by inclusion of both an RFlowSpec and an RHID parameter in the CONNECT message (possibly with an optional RGroup parameter). Any ST agent that receives a CONNECT message with both an RFlowSpec and an RHID parameter will create database entries for streams in both directions and will allocate resources in both directions for them. By this we mean that an ST agent will reserve resources to the next-hop agent for the normal stream and resources back to the previous-hop agent for the reverse stream. This is necessary since it is expected that network reservation interfaces will require the destination address(es) in order to make reservations, and because all ST agents must use the same reservation model.
The target agent will select a Name for the reverse stream and return it (in the RName parameter) and the resulting FlowSpec (in the RFlowSpec parameter) of the ACCEPT message. Each agent that processes the ACCEPT will update its partial stream database entry for the reverse stream with the Name contained in the RName parameter. We assume that the next higher protocol layer will use the same SAP for both streams. 3.6.4. NoRecovery Option The NoRecovery option is used to indicate that ST agents should not attempt recovery in case of network or component failure. If a failure occurs, the origin will be notified via a REFUSE message and the target(s) via a DISCONNECT, with an appropriate reason code of "failure" (i.e., one of DropFailAgt, DropFailHst, DropFailIfc, DropFailNet, IntfcFailure, NetworkFailure, STAgentFailure, FailureRecovery). They can then decide whether to wait for the failed component to be fixed, or drop the target via DISCONNECT/REFUSE messages. The NoRecovery option can only be set to one (1) by the origin, and must be the same for the entire stream. 3.6.5. RevChrg Option The RevChrg option bit in the FlowSpec is set to one (1) by the origin to request that the target(s) pay any charges associated with the stream (to the target(s)); see Section 4.2.2.3 (page 83). If the target is not willing to accept charges, the bit should be set to zero (0) by the target before returning the FlowSpec to the origin in an ACCEPT message. If the FDx option is also specified, the target pays charges for both streams. 3.6.6. Source Route Option The Source Route Option may be used both for diagnostic purposes, and, in those hopefully infrequent cases where the standard routing mechanisms do not produce paths that satisfy some policy constraint, to allow the origin to prespecify the ST agents along the path to the target(s). The idea is that the origin can explicitly specify the path to a target, either strictly hop-by-hop or more loosely by specification of one or more agents through which the path must pass.
The option is specified by including source routing information in the Target structure. A target may contain zero or more SrcRoute options; when multiple options are present, they are processed in the order in which they occur. The parameter code indicates whether the portion of the path contained in the parameter is of the strict or loose variety. Since portions of a path may pass through portions of an internet that does not support ST agents, there are also forms of the SrcRoute option that are converted into the Application Agent A Agent 2 Agent 3 Agent B 1. (open B<SR=2,3>) 2. V (proc B listening) 3. (source routed to 2) V 4. (check resources from A to Agent 2: already allocated, V reuse control link & HID, no additional resources needed) 5. +-> CONNECT B<SR=2,3>->-+-+ <RVLId=23><SVLId=5> | | 6. <Ref=50> V | 7. +<- ACK ----------------+ | <RVLId=5><SVLId=23> | <Ref=50> V 8. (source routed to 3) V 9. (reserve resources 2 to 3) V 10. +-> CONNECT B<SR=3> ---->+ <RVLId=0><SVLId=24> | <Ref=280><HID=4801> V 11. +<- HID-APPROVE <--------+ <RVLId=24><SVLId=33> | <Ref=280><HID=4801> | V (routing to B) V (reserve resources from 3 to B) V 12. +-> CONNECT B ---------->+ <RVLId=0><SVLId=32> | <Ref=330><HID=6000> V 13. +<- HID-APPROVE <--------+ <RVLId=32><SVLId=45> | <Ref=330><HID=6000> V 14. (proc B accepts) V ... perform normal ACCEPT processing ... <-----+ Figure 17. Source Routing Option
corresponding IP Source Routing options by the ST agent that performs the encapsulation. The SrcRoute option is usually selected by the origin, but may be used by intermediate agents if specified as a result of the routing function. For example, in the topology of Figure 2, if A wants to add B back into the stream, its routing function might decide that the best path is via Agent 3. Since the data is already being multicast across the network connected to C, D, and E, the route via Agent 3 might cost less than having A replicate the data packets and send them across A's network a second time. 3.7. Ancillary Functions There are several functions and procedures that are required by the ST Protocol. They are described in subsequent sections. 3.7.1. Failure Detection The ST failure detection mechanism is based on two assumptions: 1 If a neighbor of an ST agent is up, and has been up without a disruption, and has not notified the ST agent of a problem with streams that pass through both, then the ST agent can assume that there has not been any problem with those streams. 2 A network through which an ST agent has routed a stream will notify the ST agent if there is a problem that affects the stream data packets but does not affect the control packets. The purpose of the robustness protocol defined here is for ST agents to determine that the streams through a neighbor have been broken by the failure of the neighbor or the intervening network. This protocol should detect the overwhelming majority of failures that can occur. Once a failure is detected, recovery procedures are initiated. 3.7.1.1. Network Failures In this memo, a network is defined to be the protocol layer(s) below ST. This function can be implemented in a hardware module separate from the ST agent, or as software modules within the ST agent itself, or as a combination of
both. This specification and the robustness protocol do not differentiate between these alternatives. An ST agent can detect network failures by two mechanisms; the network can report a failure, or the ST agent can discover a failure by itself. They differ in the amount of information that ST agent has available to it in order to make a recovery decision. For example, a network may be able to report that reserved bandwidth has been lost and the reason for the loss and may also report that connectivity to the neighboring ST agent remains intact. In this case, the ST agent may request the network to allocate bandwidth anew. On the other hand, an ST agent may discover that communication with a neighboring ST agent has ceased because it has not received any traffic from that neighbor in some time period. If an ST agent detects a failure, it may not be able to determine if the failure was in the network while the neighbor remains available, or the neighbor has failed while the network remains intact. 3.7.1.2. Detecting ST Stream Failures Each ST agent periodically sends each neighbor with which it shares a stream a HELLO message. A HELLO message is ACKed if the Reference field is non-zero. This message exchange is between ST agents, not entities representing streams or applications (there is no Name field in a HELLO message). That is, an ST agent need only send a single HELLO message to a neighbor regardless of the number of streams that flow between them. All ST agents (host as well as intermediate) must participate in this exchange. However, only agents that share active streams need to participate in this exchange. To facilitate processing of HELLO messages, an implementation may either create a separate Virtual Link Identifier for each neighbor having an active stream, or may use the reserved identifier of one (1) for the SVLId field in all its HELLO messages. An implementation that wishes to send its HELLO messages via a data path instead of the control path may setup a separate stream to its neighbor agent for that purpose. The HELLO message would contain a HID of zero, indicating a control message, but would be identified to the next lower protocol layer as being part of the separate stream. As well as identifying the sender, the HELLO message has two fields; a HelloTimer field that is in units of milliseconds modulo the maximum for the field size, and a