Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 45.914
Word version: 18.0.0
0…
4…
7…
8…
9…
11…
8
Adaptive symbol constellation
8.1
Concept Description
8.2
Performance Characterization
8.3
Impacts on the Mobile Station
8.4
Impacts on the BSS
8.5
Impacts on Network Planning
8.6
Impacts on the Specification
8.7
Summary of Evaluation versus Objectives
8.8
References
...
8
Adaptive symbol constellation
p. 137
8.1
Concept Description
p. 137
8.1.1
Symbol Constellation for the Downlink
p. 137
8.1.2
-QPSK Modulator
p. 138
8.1.3
Choice of Symbol Constellation
p. 139
8.1.4
Adaptive Constellation Rotation
p. 140
8.1.5
Frequency hopping
p. 142
8.1.5.1
Legacy support
p. 145
8.1.5.2
Additional signaling
p. 145
8.1.6
SAM - Single Antenna MIMO - for VAMOS
p. 145
8.1.6.1
Concept description
p. 145
8.1.6.1.1
Computational Complexity
p. 147
8.2
Performance Characterization
p. 147
8.2.1
Link Level Performance
p. 147
8.2.1.1
Simulation assumptions
p. 148
8.2.1.2
Sensitivity Performance
p. 149
8.2.1.2.1
SAIC receiver
p. 149
8.2.1.2.1.1
Support of legacy mobiles
p. 151
8.2.1.2.2
MUROS receiver
p. 152
8.2.1.2.2.1
Symbol Constellation Detection
p. 152
8.2.1.2.2.2
Constellation Rotation Detection
p. 153
8.2.1.2.3
SIC receiver
p. 154
8.2.1.2.3.1
Investigations by Telefon AB LM Ericsson
p. 154
8.2.1.2.3.1.1
Simulation assumptions
p. 154
8.2.1.2.3.1.2
Performance Plots
p. 155
8.2.1.2.3.2
Investigations by ST-NXP Wireless France
p. 156
8.2.1.2.3.2.1
Simulation Assumptions
p. 156
8.2.1.2.3.2.2
Simulation Results for Downlink
p. 157
8.2.1.3
Interference Performance
p. 159
8.2.1.3.1
non-SAIC receiver
p. 159
8.2.1.3.2
SAIC receiver
p. 161
8.2.1.3.2.1
Adaptive Constellation Rotation
p. 169
8.2.1.3.3
MUROS receiver
p. 171
8.2.1.3.3.1
Constellation Rotation Detection
p. 171
8.2.1.3.4
SIC receiver
p. 172
8.2.1.3.4.1
Investigations by Telefon AB LM Ericsson
p. 172
8.2.1.3.4.1.1
Simulation assumptions
p. 172
8.2.1.3.4.1.2
Performance Plots for MTS Test Scenarios
p. 173
8.2.1.3.4.2
Investigations by ST-NXP Wireless France
p. 176
8.2.1.3.4.2.1
Introduction
p. 176
8.2.1.3.4.2.2
Simulation Assumptions for Uplink
p. 177
8.2.1.3.4.2.3
Simulation Results for Uplink
p. 178
8.2.1.3.4.2.4
Simulation Assumptions for Downlink
p. 181
8.2.1.3.4.2.5
Simulation Results for Downlink
p. 181
8.2.1.3.4.2.6
Conclusions
p. 185
8.2.1.3.5
SAM Receiver for VAMOS
p. 185
8.2.1.3.5.1
Simulation assumptions
p. 185
8.2.1.3.5.2
Performance plots
p. 186
8.2.1.4
Results from: MUROS - Performance of Alpha-QPSK with Legacy DARP MS
p. 191
8.2.1.4.1
Simulation Assumptions
p. 191
8.2.1.4.1.1
Legacy Terminals
p. 191
8.2.1.4.1.2
Transmitted MUROS Signal
p. 192
8.2.1.4.1.3
Alpha-QPSK
p. 192
8.2.1.4.1.4
MUROS Interference Models
p. 193
8.2.1.4.1.5
Other Simulation Parameters
p. 193
8.2.1.4.2
Downlink Performance Results
p. 193
8.2.1.4.2.1
Sensitivity Performance
p. 193
8.2.1.4.2.2
MTS-1 Performance
p. 194
8.2.1.4.2.3
MTS-2 Performance
p. 195
8.2.1.4.2.4
MTS-3 Performance
p. 196
8.2.1.4.2.5
MTS-4 Performance
p. 197
8.2.1.4.3
Summary of Results
p. 198
8.2.2
Network Level Performance
p. 198
8.2.2.1
Adaptive constellation rotation
p. 198
8.2.2.2
Support of legacy non-DARP Phase I receivers using ∝-QPSK
p. 199
8.2.2.2a
Downlink power control using ∝-QPSK
p. 200
8.2.2.2.1
SCPIR distributions in different system simulations
p. 201
8.2.2.3
Evaluation of VAMOS MAIO hopping
p. 202
8.2.2.3a
MAIO Hopping Scheme Methodology
p. 203
8.2.2.3a.1
MAIO Hopping Sequence Generation
p. 203
8.2.2.3a.2
Channel Allocation and Adaptation
p. 203
8.2.2.3a.3
Power Control
p. 204
8.2.2.3a.4
Mechanism for Applying MAIO Hopping
p. 204
8.2.2.3a.5
Penetration Levels and MS Types
p. 204
8.2.2.3a.6
Link 2 System Interface
p. 204
8.2.2.3a.7
System Performance Evaluation
p. 204
8.2.2.3a.7.1
Simulation assumption
p. 204
8.2.2.3a.7.2
Channel modes
p. 205
8.2.2.3a.7.3
Minimum call quality performance
p. 205
8.2.2.3a.7.4
System performance results
p. 205
8.2.2.4
Evaluation of wide pulse for VAMOS
p. 206
8.2.2.4.1
Background
p. 206
8.2.2.4.2
Methodology
p. 207
8.2.2.4.2.1
Power control
p. 208
8.2.2.4.2.2
Channel allocation
p. 208
8.2.2.4.2.3
Modelling of link performance
p. 208
8.2.2.4.3
Results
p. 208
8.2.2.4.3.1
Simulation assumptions
p. 208
8.2.2.4.3.2
System capacity gains
p. 208
8.2.2.4.3.2.1
MUROS-2, MS penetration scenario I
p. 208
8.2.2.4.3.2.2
MUROS-2, MS penetration scenario II
p. 209
8.2.2.4.3.2.3
MUROS-3A and MUROS3-B, MS penetrations scenario I
p. 209
8.2.2.4.3.2.4
MUROS-3A and MUROS3-B, MS penetrations scenario I
p. 210
8.2.2.4.3.3
Impact on legacy users
p. 210
8.2.2.4.3.3.1
MUROS-2
p. 211
8.2.2.4.3.4
Discussion
p. 213
8.2.3
Verification of Link to System Mapping
p. 213
8.2.3.1
Methodology, DL
p. 213
8.2.3.1.1
Interference scenarios
p. 213
8.2.3.1.2
Raw BER verification levels
p. 214
8.2.3.1.3
Interference statistics
p. 215
8.2.3.1.4
Adjacent channel interference
p. 215
8.2.3.1.5
Mappings
p. 215
8.2.3.2
Verification, DL
p. 217
8.2.3.2.1
SAIC
p. 217
8.2.3.2.2
non-SAIC
p. 219
8.2.3.2.3
SAM
p. 221
8.2.4
Verfication of 4-dimension Link to System Mapping
p. 223
8.2.4.1
Methodology, DL
p. 223
8.2.4.2
Simulation, DL
p. 224
8.2.4.3
Verification, DL
p. 225
8.2.5
Methodology and verification of integrated link simulator modeling
p. 227
8.2.5.1
Methodology
p. 227
8.2.5.1.1
Interferers
p. 227
8.2.5.1.1.1
Interferer types
p. 227
8.2.5.1.1.2
Limit of interferers
p. 227
8.2.5.1.1.2.1
Limiting the number of interferers
p. 227
8.2.5.1.1.2.2
Requirement on modeled energy level
p. 228
8.2.5.1.1.2.3
Conservation of energy
p. 228
8.2.6
Results
p. 228
8.2.6.1
Limit of number of interferers
p. 228
8.2.6.2
Impact on simulated system capacity
p. 229
8.3
Impacts on the Mobile Station
p. 230
8.3.1
Legacy mobile stations
p. 230
8.3.2
Mobile stations supporting Adaptive symbol constellation
p. 230
8.4
Impacts on the BSS
p. 230
8.5
Impacts on Network Planning
p. 231
8.6
Impacts on the Specification
p. 231
8.7
Summary of Evaluation versus Objectives
p. 231
8.7.1
Performance objectives
p. 231
8.7.2
Compatibility objectives
p. 232
8.8
References
p. 234