Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 45.914
Word version: 18.0.0
0…
4…
7…
8…
9…
11…
7
Orthogonal Sub Channels for Circuit Switched Voice Capacity Evolution
7.1
Concept description
7.2
Performance Characterization
7.3
Impacts on the Mobile Station
7.4
Impacts on the BSS
7.5
Impacts on Network Planning
7.6
Impacts on the Specifications
7.7
Summary of Evaluation versus Objectives
7.8
References
...
7
Orthogonal Sub Channels for Circuit Switched Voice Capacity Evolution
p. 65
7.1
Concept description
p. 65
7.1.1
Overview
p. 65
7.1.2
Downlink concept
p. 65
7.1.2.1
Basic OSC concept
p. 65
7.1.2.1.1
Mapping of user bits using QPSK modulation
p. 65
7.1.2.1.2
Burst structure, training sequence, tail and guard bits
p. 66
7.1.2.1.3
Tx pulse shaping filter
p. 67
7.1.2.1.3.1
Investigated Candidate TX Pulse Shapes
p. 67
7.1.2.1.3.1.1
Candidate Pulse Shape 1
p. 67
7.1.2.1.3.1.2
Candidate Pulse Shape 2
p. 69
7.1.2.1.3.2
Comparison of Filter Characteristics
p. 70
7.1.2.1.4
Symbol rotation
p. 71
7.1.2.1.5
DTX handling when one sub channel is inactive
p. 71
7.1.2.1.6
FACCH signalling
p. 71
7.1.2.1.7
SACCH signalling
p. 71
7.1.2.2
Enhanced OSC concept
p. 72
7.1.2.2.1
Sub channel specific power control
p. 72
7.1.2.2.2
Power Balancing
p. 73
7.1.2.2.3
Soft Stealing for FACCH with sub channel specific power control
p. 73
7.1.2.2.4
Soft Stealing for SACCH with sub channel specific power control
p. 73
7.1.2.2.5
User Diversity
p. 74
7.1.2.2.5.1
Basic User Diversity
p. 74
7.1.2.2.5.2
Optimized User Diversity
p. 75
7.1.2.2.5.3
Support of Optimized User Diversity for scenarios with mixed MS types
p. 76
7.1.2.2.5.4
Benefits of Optimized User Diversity
p. 82
7.1.3
Uplink concept
p. 83
7.1.3.1
Modulation and burst structure
p. 83
7.1.3.2
Usage of new training sequences
p. 83
7.1.3.3
Tx pulse shape
p. 83
7.1.3.4
Associated control channels
p. 83
7.1.3.5
User diversity
p. 83
7.1.3.6
BTS receiver
p. 83
7.1.4
RR signalling
p. 83
7.2
Performance Characterization
p. 84
7.2.1
Link Level Performance
p. 84
7.2.1.1
Sensitivity Performance
p. 84
7.2.1.1.1
Sensitivity in downlink
p. 84
7.2.1.1.1.1
Sensitivity in downlink without sub channel specific power control
p. 84
7.2.1.1.1.2
Sensitivity in downlink with subchannel specific power control
p. 87
7.2.1.1.2
Sensitivity in uplink
p. 88
7.2.1.2
Interference Performance
p. 89
7.2.1.2.1
Interference limited performance in downlink
p. 89
7.2.1.2.1.1
Interference performance in downlink without subchannel specific power control
p. 89
7.2.1.2.1.1.1
Performance for MUROS Test Scenario 1
p. 89
7.2.1.2.1.1.2
Performance for MUROS Test Scenario 2
p. 89
7.2.1.2.1.1.3
Performance for Using Optimized TX Pulse Shapes
p. 91
7.2.1.2.1.2
Interference performance in downlink with subchannel specific power control
p. 92
7.2.1.3
Results from: MUROS - Performance of Legacy MS
p. 94
7.2.1.3.1
Simulation Assumptions
p. 94
7.2.1.3.1.1
Legacy Terminals
p. 94
7.2.1.3.1.2
Transmitted MUROS Signal
p. 95
7.2.1.3.1.3
MUROS Interference Models
p. 95
7.2.1.3.1.4
Other Simulation Parameter
p. 95
7.2.1.3.2
Downlink Performance Results
p. 95
7.2.1.3.2.1
Sensitivity Performance
p. 95
7.2.1.3.2.2
MTS-1 Performance
p. 96
7.2.1.3.2.3
MTS-2 Performance
p. 97
7.2.1.3.2.4
MTS-3 Performance
p. 98
7.2.1.3.2.5
MTS-4 Performance
p. 99
7.2.1.3.2.6
ACI Performance
p. 100
7.2.1.3.3
Summary of results
p. 101
7.2.2
Network Level Performance
p. 101
7.2.2.1
Network Configurations
p. 101
7.2.2.2
Performance results
p. 102
7.2.2.2.1
MUROS-1
p. 103
7.2.2.2.2
MUROS-2
p. 103
7.2.2.2.3
MUROS-3
p. 103
7.2.2.2.4
OSC capacity gains and HW efficiency
p. 104
7.2.2.2.5
Performance of optimized user diversity
p. 105
7.2.2.2.6
Performance applying Sub Channel Specific Power Control for OSC
p. 106
7.2.2.2.7
Performance for Usage of Optimized TX Pulse Shape in Downlink
p. 107
7.2.2.2.7.1
Setup for System Performance Evaluation
p. 107
7.2.2.2.7.1.1
Network configurations
p. 107
7.2.2.2.7.1.2
Channel mode adaptation
p. 107
7.2.2.2.7.1.3
Link to system interface
p. 107
7.2.2.2.7.2
System Performance Results
p. 107
7.2.2.2.7.2.1
MUROS-1
p. 107
7.2.2.2.7.2.2
MUROS-2
p. 109
7.2.2.2.7.3
Performance Comparison
p. 111
7.2.2.2.7.3.1
Introduction
p. 111
7.2.2.2.7.3.2
Comparison
p. 111
7.2.2.2.7.3.3
Interference analysis
p. 112
7.2.3
Performance Summary
p. 113
7.2.4
Modelling methodology for a VAMOS and legacy mobile receiver
p. 113
7.2.4.1
Introduction
p. 113
7.2.4.2
L2S Modelling Methodology
p. 113
7.2.4.3
Initial Interference Profile
p. 114
7.2.4.4
'ACP' factors
p. 115
7.2.4.4.1
Introduction
p. 115
7.2.4.4.2
RawBER 'ACP' factors for VAMOS I receiver
p. 115
7.2.4.4.3
RawBER 'ACP' factors for Legacy Non-DARP receiver
p. 116
7.2.4.5
Final Interference Profile
p. 117
7.2.5
Verification of Link to System Mapping
p. 119
7.2.5.1
Introduction
p. 119
7.2.5.2
Link To System Interface For Vamos-I Receiver
p. 119
7.2.5.3
Mappings For The Vamos-I Receiver
p. 120
7.2.5.3.1
MUROS-1
p. 120
7.2.5.3.1.1
50 % VAMOS-I mobile penetration
p. 120
7.2.5.3.1.2
75 % VAMOS-I mobile penetration
p. 121
7.2.5.3.1.3
100 % VAMOS-I mobile penetration
p. 122
7.2.5.3.2
MUROS-2
p. 124
7.2.5.3.2.1
50 % VAMOS-I mobile penetration
p. 124
7.2.5.3.2.2
75 % VAMOS-I mobile penetration
p. 125
7.2.5.3.2.3
100 % VAMOS-I mobile penetration
p. 126
7.2.5.4
Mappings For The Legacy Non-Darp Receiver
p. 128
7.3
Impacts on the Mobile Station
p. 129
7.4
Impacts on the BSS
p. 129
7.4.1
BTS Transmitter
p. 129
7.4.2
BTS Receiver
p. 129
7.4.3
Radio Resource Management (RRM)
p. 130
7.4.3.1
Power Control
p. 130
7.4.3.2
Dynamic Channel Allocation (DCA)
p. 130
7.4.3.3
AMR Channel Rate and Codec Mode Adaptation
p. 130
7.5
Impacts on Network Planning
p. 130
7.5.1
Impacts to Abis interface
p. 130
7.5.1.1
Impact of OSC on Abis allocation strategy
p. 130
7.5.1.2
Impact of OSC on bandwidth consumption
p. 131
7.5.1.3
Abis migration paths
p. 131
7.5.2
Impacts on Frequency Planning
p. 132
7.6
Impacts on the Specifications
p. 132
7.7
Summary of Evaluation versus Objectives
p. 132
7.7.1
Performance objectives
p. 133
7.7.2
Compatibility objectives
p. 134
7.8
References
p. 135