Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 45.912
Word version: 18.0.0
0…
4…
7…
8…
9…
10…
11…
12…
8
Higher Order Modulation and Turbo Codes
8.1
Introduction
8.2
Concept Description
8.3
Modelling Assumptions and Requirements
8.4
Performance Characterization
8.5
Symbol Mapping of Turbo Coded Bits
8.6
Higher Order Modulation, Turbo Codes Combined with MS Receiver Diversity
8.7
Modified 16-ary Constellations for Higher Order Modulation and Turbo Coding Schemes
8.7a
Blind modulation detection performance
8.7b
Impact of using higher order modulations on the BCCH carrier
8.7c
Multiplexing higher order modulation MS with legacy MS
8.8
Incremental Redundancy for Higher Order Modulation and Turbo Coding Schemes (HOMTC)
8.8a
Modulation Order and symbol Rate Enhancement (MORE) [48]
8.9
Implementation Impact
8.9a
Implementation Aspects of MORE
8.10
Impacts on the Specifications
8.11
References
...
8
Higher Order Modulation and Turbo Codes
p. 114
8.1
Introduction
p. 114
8.2
Concept Description
p. 114
8.2.1
Higher Order Modulations
p. 114
8.2.1.1
Square 16QAM Modulation
p. 114
8.2.1.2
Other 16-ary Modulations
p. 116
8.2.1.3
32QAM Modulation
p. 116
8.2.2
Channel Coding
p. 117
8.2.3
Symbol Mapping and Interleaving
p. 117
8.2.4
Header Block
p. 117
8.2.5
USF Signaling
p. 117
8.2.6
Link Adaptation
p. 117
8.2.7
Incremental Redundancy Combining
p. 117
8.2.8
Multislot Classes
p. 117
8.2.9
Non-core Components
p. 118
8.2.9.1
Dual Carrier
p. 118
8.2.9.2
MS Receiver Diversity
p. 118
8.3
Modelling Assumptions and Requirements
p. 118
8.3.1
Transmitter Impairments
p. 119
8.3.2
Receiver Impairments
p. 119
8.3.3
Equalizer
p. 120
8.4
Performance Characterization
p. 120
8.4.1
Implementation Set A
p. 120
8.4.1.1
Modelling assumptions and requirements
p. 120
8.4.1.2
Comparison of BLER Performance
p. 120
8.4.1.3
Link Performance with Link Adaptation
p. 122
8.4.1.4
System Simulation Results
p. 123
8.4.2
Implementation B
p. 126
8.4.2.1
Introduction
p. 126
8.4.2.2
Basic Link Layer Performance
p. 126
8.4.2.2.1
BER Performance
p. 126
8.4.2.2.2
BLER Performance
p. 127
8.4.2.2.3
Throughput
p. 129
8.4.2.3
Impact of Frequency Hopping
p. 129
8.4.2.4
Impact of Incremental Redundancy
p. 130
8.4.2.5
Impact of Propagation Environment
p. 131
8.4.2.6
Impact of RX and TX Impairments
p. 131
8.4.2.7
Impact of RRC Pulse Shaping
p. 133
8.4.2.8
Evaluation of Performance
p. 134
8.4.3
Implementation C
p. 135
8.4.3.1
Channel coding
p. 135
8.4.3.1.1
EGPRS
p. 135
8.4.3.1.2
Convolutional Codes with 16QAM
p. 135
8.4.3.1.3
Turbo Codes with 8-PSK Modulation
p. 135
8.4.3.1.4
Turbo Codes with 16QAM Modulation
p. 136
8.4.3.2
Modulation
p. 136
8.4.3.3
Pulse Shaping
p. 136
8.4.3.4
Link performance Evaluation
p. 136
8.4.3.4.1
Simulation Assumptions
p. 136
8.4.3.4.2
Link Level Results
p. 137
8.4.3.5
Link-to-system Interface
p. 138
8.4.3.6
System Level Results
p. 138
8.4.3.6.1
Simulation Assumptions
p. 138
8.4.3.6.2
Results
p. 139
8.4.3.7
Increased Peak Throughput with 16QAM and Turbo Codes
p. 149
8.4.3.7.1
Modulation, Coding and Interleaving
p. 149
8.4.3.7.2
Link Performance
p. 150
8.4.3.7.3
System Performance
p. 153
8.4.3.8
16QAM with Alternative Transmit Pulse Shaping
p. 155
8.4.3.8.1
Link Performance
p. 155
8.4.3.8.2
Spectrum
p. 157
8.4.3.8.3
Discussion
p. 158
8.4.3.9
Higher order modulation than 16-QAM
p. 158
8.4.3.9.1
Modulation, coding and interleaving
p. 158
8.4.3.9.2
Interference Rejection Combining, IRC
p. 160
8.4.3.9.3
Results
p. 161
8.4.3.10
Comparison between DFSE and RSSE Performance
p. 168
8.4.3.11
Discussion
p. 169
8.4.3.11.1
Link Level Performance
p. 169
8.4.3.11.2
System Level Performance
p. 169
8.4.4
Implementation Set D
p. 170
8.4.4.1
Performance Characterisation
p. 170
8.4.4.1.1
Uncoded BER Performance
p. 170
8.4.4.1.2
BLER Performance of Turbo Coding with 8PSK
p. 171
8.4.4.1.3
BLER Performance of Turbo Coding with 16QAM
p. 172
8.4.4.1.4
Comparison to Ericsson Results
p. 173
8.4.4.1.5
Graphs for Co-Channel Interferer Case (TU3iFH)
p. 174
8.4.4.1.6
Graphs for Sensitivity Limited Case (TU3iFH)
p. 178
8.4.4.1.7
Throughput Performance Gain
p. 181
8.4.4.1.8
Number of Turbo Decoding Iterations
p. 193
8.4.4.1.9
Improved Cell Edge Performance
p. 195
8.4.4.1.10
System Performance
p. 198
8.4.4.1.11
32QAM Modulation
p. 199
8.4.4.2
Comparison of Different Coding Configurations for Higher Order Modulation and Turbo Coding Schemes
p. 209
8.4.4.2.1
HOMTC Coding Scheme Configurations
p. 209
8.4.4.2.2
Performance Characterization
p. 210
8.4.4.2.3
Discussion
p. 213
8.4.4.3
Impact of Blind Modulation Detection
p. 213
8.4.4.3.1
Blind Modulation Detection
p. 213
8.4.4.3.2
Simulation Configuration
p. 214
8.4.4.3.3
Performance Results
p. 214
8.4.4.3.4
Discussion
p. 214
8.4.4.3.5
Conclusion
p. 214
8.5
Symbol Mapping of Turbo Coded Bits
p. 214
8.5.1
Symbol mapping for 16-QAM Modulation
p. 215
8.5.2.1
Concept description
p. 215
8.5.2.2
16-QAM Symbol Mapping of Turbo Coded Bits
p. 215
8.5.2
Performance Evaluation
p. 218
8.6
Higher Order Modulation, Turbo Codes Combined with MS Receiver Diversity
p. 218
8.6.1
Simulation Model
p. 218
8.6.2
Simulation Results
p. 219
8.6.2.1
Interference Limited Scenario
p. 219
8.6.2.2
Sensitivity Limited Scenario
p. 220
8.6.3
Discussion
p. 221
8.6.3.1
Interference Limited Scenario
p. 221
8.6.3.2
Noise Limited Scenario
p. 222
8.7
Modified 16-ary Constellations for Higher Order Modulation and Turbo Coding Schemes
p. 222
8.7.1
Introduction
p. 222
8.7.2
Circular 16APK Constellations
p. 222
8.7.2.1
PAPR and Dynamic Range Comparison
p. 223
8.7.3
Logical Channel Configurations
p. 224
8.7.4
Performance Characterisation
p. 224
8.7.4.1
Uncoded BER Performance
p. 225
8.7.4.2
BLER Performance
p. 226
8.7.4.2.1
Sensitivity Limited Channel
p. 226
8.7.4.2.2
Interference Limited Channel
p. 226
8.7a
Blind modulation detection performance
p. 229
8.7a.1
Introduction
p. 229
8.7a.2
Blind modulation detection
p. 230
8.7a.3
Simulation conditions
p. 230
8.7a.4
Results
p. 231
8.7a.4.1
Single-antenna receiver
p. 231
8.7a.4.2
Dual-antenna receiver (maximum ratio combining)
p. 231
8.7a.4.3
Dual-antenna receiver (interference cancellation)
p. 231
8.7a.5
Discussion
p. 232
8.7b
Impact of using higher order modulations on the BCCH carrier
p. 232
8.7b.1
Introduction
p. 232
8.7b.2
Impact on cell selection and reselection
p. 232
8.7b.2.1
Simulation assumptions
p. 232
8.7b.2.2
Results and discussion
p. 233
8.7b.3
Impact on GPRS/EGPRS MS open loop power control
p. 235
8.7c
Multiplexing higher order modulation MS with legacy MS
p. 236
8.7c.1
Introduction
p. 236
8.7c.2
Background and problem description
p. 236
8.7c.3
Simulation setup
p. 236
8.7c.3.1
Simulator description
p. 236
8.7c.3.2
Scheduling strategies
p. 237
8.7c.3.3
Performance measure
p. 237
8.7c.3.4
MS capabilities and MCS selection
p. 237
8.7c.4
Results and discussion
p. 238
8.7c.4.1
Case 1: EDGE/HOT mix on downlink, EDGE on uplink
p. 238
8.7c.4.1.1
Results for moderate load
p. 238
8.7c.4.1.2
Results for high load
p. 239
8.7c.4.2
Case 2: EDGE/HOT mix on downlink, EDGE/HOT mix on uplink
p. 240
8.7c.4.2.1
Results for moderate load
p. 241
8.7c.4.2.2
Results for high load
p. 242
8.7c.4.3
Discussion
p. 243
8.8
Incremental Redundancy for Higher Order Modulation and Turbo Coding Schemes (HOMTC)
p. 243
8.8.1
Introduction
p. 243
8.8.2
EGPRS ARQ Scheme
p. 243
8.8.3
Concept Proposal for ARQ with HOMTC
p. 245
8.8.3.1
Turbo Coding Block Structure
p. 245
8.8.3.2
RLC/MAC Operation for HOMTC
p. 245
8.8.3.2.1
Type I ARQ for HOMTC with Link Adaptation
p. 246
8.8.3.2.2
Type II Hybrid ARQ for HOMTC
p. 246
8.8.3.2.3
Header Format
p. 249
8.8.3.3
USF Signalling
p. 249
8.8a
Modulation Order and symbol Rate Enhancement (MORE) [48]
p. 249
8.8a.1
Concept Description
p. 249
8.8a.2
Discussion of the Concept
p. 249
8.8a.2.1
Benefits
p. 249
8.8a.2.2
Drawbacks
p. 250
8.8a.3
Performance Estimation
p. 250
8.9
Implementation Impact
p. 252
8.9.1
Impacts on the Mobile Station
p. 252
8.9.2
Impacts on the BSS
p. 252
8.9.3
Impacts on the Core Network
p. 253
8.9a
Implementation Aspects of MORE
p. 253
8.9a.1
Mobile Stations
p. 253
8.9a.2
Network
p. 253
8.10
Impacts on the Specifications
p. 253
8.11
References
p. 254