Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TS 45.022
Word version: 18.0.0
1…
A…
A
Example 1 (Siemens AG)
B
Example 2 (DeTeMobil)
C
Example 3 (Alcatel)
D
Example 4 (France Telecom/CNET)
E
Simulation Model for Handover Performance Evaluation in Hierarchical Cell Structures
$
Change history
A
Example 1 (Siemens AG)
p. 10
A.1
Introduction
p. 10
A.2
Functional requirements
p. 10
A.3
BSS pre-processing and threshold comparisons
p. 11
A.3.1
Measurement averaging process
p. 11
A.3.2
Handover threshold comparison process
p. 11
A.4
BSS decision algorithm
p. 12
A.5
Additional O&M parameters stored for handover purposes in hierarchical networks
p. 12
A.6
Bibliography
p. 13
B
Example 2 (DeTeMobil)
p. 14
B.1
Introduction
p. 14
B.2
Definitions
p. 14
B.2.1
Categories of cells
p. 14
B.2.2
Classification of MS in connected mode
p. 15
B.2.2.1
Classification in the lower layer
p. 15
B.2.2.2
Classification in the middle layer or the upper layer
p. 15
B.2.2.3
Loss of the "slow MS" or "quasi-stationary MS" status
p. 16
B.3
Power Control Algorithm
p. 16
B.3.1
MS connected over a cell of the lower layer
p. 16
B.3.2
MS connected over a cell of the middle layer or the upper layer
p. 16
B.4
Handover algorithm in a hierarchical cell structure
p. 16
B.4.1
MS connected over a cell of the lower layer
p. 16
B.4.2
MS connected over a cell of the middle layer or the upper layer
p. 17
B.4.3
Handover at borders of different cell structures
p. 17
B.5
O&M-Parameter
p. 17
B.6
State diagrams
p. 18
C
Example 3 (Alcatel)
p. 21
C.1
General description
p. 21
C.1.1
Speed discrimination
p. 21
C.2
Handover causes
p. 22
C.2.1
Emergency causes
p. 22
C.2.2
Better cell causes
p. 22
C.3
Dwell time in lower layer cells:
p. 22
C.3.1
Serving cell = lower layer cell
p. 22
C.3.2
Serving cell = upper layer cell
p. 22
C.3.3
Mechanism of increasing / decreasing tdwell
p. 22
C.4
Speed discrimination process:
p. 23
C.4.1
Serving cell = upperlayer cell
p. 23
C.4.2
Serving cell = lower layer cell
p. 23
C.5
Representation of handovers
p. 24
C.5.1
Ideal behaviour: target cells are available
p. 24
C.5.2
Real behaviour: target cells may not be available
p. 24
C.6
Emergency handover
p. 25
C.6.1
Target cell = upper layer cell
p. 25
C.7
Upper layer to lower layer cells handover
p. 26
C.7.1
General principles
p. 26
C.7.2
Homogeneity of speed discrimination in lower layer and upper layer cells
p. 26
C.8
Minicells
p. 26
C.8.1
Handover diagrams
p. 26
C.9
O&M parameters
p. 27
D
Example 4 (France Telecom/CNET)
p. 28
D.1
Introduction
p. 28
D.2
Descriptions of the algorithm
p. 29
D.3
Handover causes
p. 29
D.3.1
emergency handover causes
p. 29
D.3.2
mobile speeds estimation causes
p. 29
D.4
Mobile speeds estimations
p. 30
D.4.1
Estimation of the field strength variations
p. 30
D.5
BSS decision algorithm
p. 31
D.6
O&M parameters
p. 31
D.7
Examples
p. 32
D.8
State diagrams
p. 35
D.8.1
Case of a three layers hierarchical network
p. 35
D.8.2
Case of a two layers hierarchical network
p. 36
E
Simulation Model for Handover Performance Evaluation in Hierarchical Cell Structures
p. 38
E.1
Introduction
p. 38
E.2
Mobile Environment
p. 38
E.3
Radio Network Model
p. 38
E.3.1
Scenario 1: Hot Spot
p. 38
E.3.2
Scenario 2: Line of Cells
p. 39
E.3.3
Scenario 3: Manhattan Coverage
p. 39
E.4
Propagation Model
p. 39
E.4.1
Upper Layer Path Loss
p. 39
E.4.1.1
Macrocells
p. 39
E.4.1.2
Small cells
p. 40
E.4.2
Lower Layer Path Loss
p. 41
E.4.2.1
Line-of-sight Case
p. 41
E.4.2.2
Non Line-of-sight Case
p. 42
E.4.2.3
Shape of the level with the proposed path loss model
p. 42
E.4.3
Fading
p. 43
E.5
Motion Model
p. 43
E.6
Handover Algorithms
p. 44
E.7
Measurement Reporting
p. 44
E.8
Performance Criteria
p. 44
E.9
Open Issues
p. 44
$
Change history
p. 45