In a hierarchical, or microcellular network, traffic is supported on multiple layers of cells. Typically, a network operator could implement a layer consisting of microcells as a second layer in his existing network consisting of large or small cells. The addition of this second layer would improve the capacity and coverage of his network.
In the present document the following naming convention is used for the different layers. For a network consisting of three layers the layer using the biggest cells is the "upper layer", followed by the "middle layer", and then the "lower layer" which has the smallest cells. For a network consisting of two layers, only "upper layer" and "lower layer" are used.
The intention in a hierarchical network is to use the radio link control procedures to handle the majority of the traffic in the lower layer, i.e. the smallest cells, as this will limit interference and therefore improve the frequency reuse.
However, a part of the traffic cannot always efficiently be handled in the lower layer. Examples are cases where the MS is moving fast (relative to the cell range), or where the coverage is insufficient, or where a cell to make a handover to on the same level may not be available fast enough (going around corners, entering/leaving buildings).
GSM 03.30 [2] distinguishes between three kinds of cells: large cells, small cells and micro cells. The main difference between these kinds lies in the cell range, the antenna installation site, and the propagation model applying:
In large cells the base station antenna is installed above the maximum height of the surrounding roof tops; the path loss is determined mainly by diffraction and scattering at roof tops in the vicinity of the mobile i.e. the main rays propagate above the roof tops; the cell radius is minimally 1 km and normally exceeds 3 km. Hata's model and its extension up to 2 000 MHz (COST 231-Hata model) can be used to calculate the path loss in such cells (
GSM 03.30 [2] annex B).
For small cell coverage the antenna is sited above the median but below the maximum height of the surrounding roof tops and so therefore the path loss is determined by the same mechanisms as stated in
subclause 5.2.1. However large and small cells differ in terms of maximum range and for small cells the maximum range is typically less than 1 3 km. In the case of small cells with a radius of less than 1 km the Hata model cannot be used.
The COST 231-Walfish-Ikegami model (see
GSM 03.30 [2] annex B) gives the best approximation to the path loss experienced when small cells with a radius of less than 5 km are implemented in urban environments. It can therefore be used to estimate the BTS ERP required in order to provide a particular cell radius (typically in the range 200 m - 3 km).
COST 231 defines a microcell as being a cell in which the base station antenna is mounted generally below roof top level. Wave propagation is determined by diffraction and scattering around buildings i.e. the main rays propagate in street canyons. COST 231 proposes an experimental model for microcell propagation when a free line of sight exists in a street canyon (see
GSM 03.30 [2]).
The propagation loss in microcells increases sharply as the receiver moves out of line of sight, for example, around a street corner. This can be taken into account by adding 20 dB to the propagation loss per corner, up to two or three corners (the propagation being more of a guided type in this case). Beyond, the complete COST231-Walfish-Ikegami model as presented in annex B of
GSM 03.30 [2] should be used.
Microcells have a radius in the region of 200 to 300 metres and therefore exhibit different usage patterns from large and small cells.