Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 38.810
Word version: 16.7.0
1…
2…
A…
C…
C
UE coordinate system
D
Quality of the quiet zone validation
E
Rationale behind IFF method 1
F
Rationale behind NFTF method
G
Measurement Grids
H
SINR control for Scenario 3 RRM Test with two Angles of Arrival (2 AoAs)
$
Change history
C
UE coordinate system
p. 98
C.1
Reference coordinate system
p. 98
C.2
Test conditions and angle definitions
p. 99
C.3
DUT positioning guidelines
p. 103
D
Quality of the quiet zone validation
p. 105
D.1
General
p. 105
D.2
Procedure to characterize the quality of the quiet zone for the permitted far field methods
p. 105
D.2.1
Equipment used
p. 105
D.2.2
Test frequencies
p. 107
D.2.3
Reference measurements
p. 107
D.2.4
Size of the quiet zone
p. 107
D.2.5
Minimum range length
p. 108
D.2.6
Reference AUT positions
p. 108
D.2.6.1
Distributed-axes system
p. 108
D.2.6.2
Combined-axes system
p. 109
D.2.7
Reference AUT orientations
p. 110
D.2.7.1
Distributed-axes system
p. 110
D.2.7.2
Combined-axes system
p. 111
D.2.8
Quality of quiet zone measurement uncertainty calculations for TRP
p. 113
D.2.9
Quality of quiet zone measurement uncertainty for EIRP/EIS
p. 113
E
Rationale behind IFF method 1
p. 114
E.1
IFF method 1 - working principle
p. 114
E.2
IFF method 1 - a far field system
p. 115
E.2.1
Quiet zone
p. 115
E.2.2
Implementation Requirements
p. 116
E.2.2.1
Reflector(s) Type
p. 116
E.2.2.1.1
Serrated Edge
p. 117
E.2.2.1.2
Rolled edge
p. 117
E.2.2.2
Feed Antenna location
p. 117
E.3
IFF method 1 - reciprocity
p. 117
E.4
IFF method 1 - DUT offset from the QZ centre
p. 121
E.5
IFF method 1 - operating frequency range
p. 123
E.6
IFF method 1 - positioning system
p. 124
E.7
IFF method 1 - link antennas
p. 124
F
Rationale behind NFTF method
p. 125
F.1
NFTF method - working principle
p. 125
F.2
NFTF - Spherical Scan
p. 126
F.3
NFTF - Implementation for Self-Transmitting DUTs
p. 126
F.3.1
Phase Recovery Technique
p. 126
F.3.2
Obtaining EIRP and TRP
p. 126
F.4
NFTF - Measurement Uncertainty due to Phase Variation
p. 127
G
Measurement Grids
p. 128
G.1
TRP Measurement Grids
p. 128
G.1.1
Assumptions
p. 128
G.1.1a
Grid Types
p. 131
G.1.2
TRP Integration for Constant Step Size Grid Type
p. 133
G.1.2.1
TRP Integration using Weights
p. 133
G.1.2.2
TRP Surface Integral using the Jacobian Matrix
p. 135
G.1.3
TRP Integration for Constant Density Grid Types
p. 138
G.1.4
Simulation Results
p. 138
G.1.5
Interpolation at or near the Pole
p. 140
G.2
Beam Peak Search Measurement Grids
p. 143
G.2.1
Assumptions
p. 143
G.2.2
Grid Types
p. 144
G.2.3
Simulation results
p. 144
G.2.4
Coarse and fine measurement grids
p. 148
G.3
Spherical coverage Measurement Grids
p. 150
G.3.1
Assumptions
p. 150
G.3.2
Grid Types
p. 151
G.3.3
Simulation results
p. 151
G.3.3.1
EIRP spherical coverage
p. 151
G.3.3.1.1
Analyses with 8x2 Antenna Array with Beam Peak on the Measurement Grid
p. 152
G.3.3.1.2
Analyses with 8x2 Antenna Array with Beam Peak oriented completely randomly
p. 155
G.3.3.1.3
Conclusions
p. 157
G.3.3.2
EIS spherical coverage
p. 158
G.3.3.2.1
Analyses with 8x2 Antenna Array with Beam Peak on the Measurement Grid
p. 159
G.3.3.2.2
Analyses with 8x2 Antenna Array with Beam Peak oriented completely randomly
p. 163
G.3.3.2.3
Conclusions
p. 166
G.3.4
Clarification of Min. EIRP at fixed CDF value
p. 166
G.4
Combined Beam Peak and Spherical Coverage Analyses
p. 168
H
SINR control for Scenario 3 RRM Test with two Angles of Arrival (2 AoAs)
p. 169
H.1
Case 1: TDM transmissions from 2 probes
p. 169
H.2
Case 2: Simultaneous transmission of signals from 2 probes
p. 169
H.2.1
Mode 1
p. 169
H.2.2
Mode 2
p. 169
$
Change history
p. 170