Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 38.858
Word version: 18.1.0
1…
6…
A…
A
Evaluation methodologies
B
System level simulation
C
System level simulation calibration
D
Link level evaluation for coverage performance
E
Adjacent channel co-existence evaluation
$
Change history
A
Evaluation methodologies
p. 258
A.1
Layout and UE distribution
p. 258
A.1.1
Layout
p. 258
A.1.2
UE distribution
p. 261
A.2
Interference modelling
p. 262
A.2.1
gNB self-interference modelling
p. 263
A.2.2
Co-site inter-sector co-channel inter-subband CLI
p. 264
A.2.3
Inter-site gNB-gNB co-channel inter-subband CLI
p. 264
A.2.4
UE-UE co-channel inter-subband CLI
p. 266
A.2.5
Co-site gNB-gNB adjacent-channel CLI
p. 268
A.2.6
Inter-site gNB-gNB adjacent-channel CLI
p. 269
A.2.7
UE-UE adjacent-channel CLI
p. 269
A.2.8
BS noise figure model
p. 270
A.3
Channel modelling
p. 271
A.4
Performance metrics
p. 274
A.4.1
UPT related performance metrics
p. 274
A.4.2
Latency related performance metrics
p. 275
A.4.3
RU and Unfinished/dropped FTP packets rate
p. 275
A.5
gNB antenna configuration and transmit power for SBFD
p. 275
A.6
Traffic model
p. 279
A.7
SBFD subband and slot configurations
p. 280
A.8
Coupling loss definition
p. 282
B
System level simulation
p. 283
B.1
System level simulation assumptions
p. 283
B.2
System level simulation results for semi-static SBFD
p. 285
B.2.1
SBFD Deployment Case 1 (FR1)
p. 285
B.2.1.1
Indoor office (FR1)
p. 285
B.2.1.1.1
SBFD#1_InH_FR1_Sub#1
p. 285
B.2.1.1.2
SBFD#1_InH_FR1_Sub#2
p. 288
B.2.1.1.3
SBFD#1_InH_FR1_Sub#3
p. 290
B.2.1.1.4
SBFD#1_InH_FR1_Sub#4
p. 293
B.2.1.1.5
SBFD#1_InH_FR1_Sub#5
p. 295
B.2.1.1.6
SBFD#1_InH_FR1_Sub#6
p. 296
B.2.1.1.7
SBFD#1_InH_FR1_Sub#7
p. 297
B.2.1.1.8
SBFD#1_InH_FR1_Sub#8
p. 298
B.2.1.1.9
SBFD#1_InH_FR1_Sub#9
p. 299
B.2.1.1.10
SBFD#1_InH_FR1_Sub#10
p. 300
B.2.1.1.11
SBFD#1_InH_FR1_Sub#11
p. 301
B.2.1.1.12
SBFD#1_InH_FR1_Sub#12
p. 302
B.2.1.1.13
SBFD#1_InH_FR1_Sub#13
p. 302
B.2.1.1.14
SBFD#1_InH_FR1_Sub#14
p. 303
B.2.1.2
Urban Macro (FR1)
p. 304
B.2.1.2.1
SBFD#1_UMA_FR1_Sub#1
p. 304
B.2.1.2.2
SBFD#1_UMA_FR1_Sub#2
p. 307
B.2.1.2.3
SBFD#1_UMA_FR1_Sub#3
p. 309
B.2.1.2.4
SBFD#1_UMA_FR1_Sub#4
p. 312
B.2.1.2.5
SBFD#1_UMA_FR1_Sub#5
p. 314
B.2.1.2.6
SBFD#1_UMA_FR1_Sub#6
p. 316
B.2.1.2.7
SBFD#1_UMA_FR1_Sub#7
p. 319
B.2.1.2.8
SBFD#1_UMA_FR1_Sub#8
p. 319
B.2.1.2.9
SBFD#1_UMA_FR1_Sub#9
p. 322
B.2.1.2.10
SBFD#1_UMA_FR1_Sub#10
p. 324
B.2.1.2.11
SBFD#1_UMA_FR1_Sub#11
p. 326
B.2.1.2.12
SBFD#1_UMA_FR1_Sub#12
p. 328
B.2.1.2.13
SBFD#1_UMA_FR1_Sub#13
p. 330
B.2.1.2.14
SBFD#1_UMA_FR1_Sub#14
p. 331
B.2.1.2.15
SBFD#1_UMA_FR1_Sub#15
p. 332
B.2.1.2.16
SBFD#1_UMA_FR1_Sub#16
p. 333
B.2.1.2.17
SBFD#1_UMA_FR1_Sub#17
p. 334
B.2.1.2.18
SBFD#1_UMA_FR1_Sub#18
p. 335
B.2.1.2.19
SBFD#1_UMA_FR1_Sub#19
p. 336
B.2.1.2.20
SBFD#1_UMA_FR1_Sub#20
p. 336
B.2.1.2.21
SBFD#1_UMA_FR1_Sub#21
p. 338
B.2.1.2.22
SBFD#1_UMA_FR1_Sub#22
p. 339
B.2.1.2.23
SBFD#1_UMA_FR1_Sub#23
p. 340
B.2.1.2.24
SBFD#1_UMA_FR1_Sub#24
p. 341
B.2.1.3
Dense Urban Macro layer (FR1)
p. 342
B.2.1.3.1
SBFD#1_DUMacro_FR1_Sub#1
p. 342
B.2.1.3.2
SBFD#1_DUMacro_FR1_Sub#2
p. 344
B.2.1.3.3
SBFD#1_DUMacro_FR1_Sub#3
p. 347
B.2.1.3.4
SBFD#1_DUMacro_FR1_Sub#4
p. 348
B.2.1.3.5
SBFD#1_DUMacro_FR1_Sub#5
p. 350
B.2.1.3.6
SBFD#1_DUMacro_FR1_Sub#6
p. 351
B.2.1.3.7
SBFD#1_DUMacro_FR1_Sub#7
p. 352
B.2.1.3.8
SBFD#1_DUMacro_FR1_Sub#8
p. 352
B.2.1.3.9
SBFD#1_DUMacro_FR1_Sub#9
p. 353
B.2.1.3.10
SBFD#1_DUMacro_FR1_Sub#10
p. 354
B.2.1.3.11
SBFD#1_DUMacro_FR1_Sub#11
p. 356
B.2.1.3.12
SBFD#1_DUMacro_FR1_Sub#12
p. 357
B.2.1.3.13
SBFD#1_DUMacro_FR1_Sub#13
p. 359
B.2.1.3.14
SBFD#1_DUMacro_FR1_Sub#14
p. 360
B.2.1.3.15
SBFD#1_DUMacro_FR1_Sub#15
p. 361
B.2.1.3.16
SBFD#1_DUMacro_FR1_Sub#16
p. 362
B.2.1.3.17
SBFD#1_DUMacro_FR1_Sub#17
p. 363
B.2.1.4
Dense Urban with 2-layer (FR1)
p. 364
B.2.1.4.1
SBFD#1_DU2Layer_FR1_Sub#1
p. 364
B.2.1.4.2
SBFD#1_DU2Layer_FR1_Sub#2
p. 365
B.2.2
SBFD Deployment Case 1 (FR2-1)
p. 367
B.2.2.1
Indoor office (FR2-1)
p. 367
B.2.2.1.1
SBFD#1_InH_FR2_Sub#1
p. 367
B.2.2.1.2
SBFD#1_InH_FR2_Sub#2
p. 369
B.2.2.1.3
SBFD#1_InH_FR2_Sub#3
p. 372
B.2.2.1.4
SBFD#1_InH_FR2_Sub#4
p. 374
B.2.2.1.5
SBFD#1_InH_FR2_Sub#5
p. 374
B.2.2.1.6
SBFD#1_InH_FR2_Sub#6
p. 375
B.2.2.1.7
SBFD#1_InH_FR2_Sub#7
p. 376
B.2.2.1.8
SBFD#1_InH_FR2_Sub#8
p. 377
B.2.2.1.9
SBFD#1_InH_FR2_Sub#9
p. 378
B.2.2.1.10
SBFD#1_InH_FR2_Sub#10
p. 379
B.2.2.1.11
SBFD#1_InH_FR2_Sub#11
p. 380
B.2.2.1.12
SBFD#1_InH_FR2_Sub#12
p. 381
B.2.2.2
Dense Urban Macro layer (FR2-1)
p. 382
B.2.2.2.1
SBFD#1_DUMacro_FR2_Sub#1
p. 382
B.2.2.2.2
SBFD#1_DUMacro_FR2_Sub#2
p. 384
B.2.2.2.3
SBFD#1_DUMacro_FR2_Sub#3
p. 386
B.2.2.2.4
SBFD#1_DUMacro_FR2_Sub#4
p. 387
B.2.2.2.5
SBFD#1_DUMacro_FR2_Sub#5
p. 388
B.2.2.2.6
SBFD#1_DUMacro_FR2_Sub#6
p. 389
B.2.2.2.7
SBFD#1_DUMacro_FR2_Sub#7
p. 391
B.2.2.2.8
SBFD#1_DUMacro_FR2_Sub#8
p. 392
B.2.2.2.9
SBFD#1_DUMacro_FR2_Sub#9
p. 394
B.2.2.2.10
SBFD#1_DUMacro_FR2_Sub#10
p. 395
B.2.2.2.11
SBFD#1_DUMacro_FR2_Sub#11
p. 396
B.2.2.2.12
SBFD#1_DUMacro_FR2_Sub#12
p. 397
B.2.2.2.13
SBFD#1_DUMacro_FR2_Sub#13
p. 398
B.2.2.2.14
SBFD#1_DUMacro_FR2_Sub#14
p. 399
B.2.2.2.15
SBFD#1_DUMacro_FR2_Sub#15
p. 400
B.2.2.2.16
SBFD#1_DUMacro_FR2_Sub#16
p. 401
B.2.2.2.17
SBFD#1_DUMacro_FR2_Sub#17
p. 401
B.2.2.2.18
SBFD#1_DUMacro_FR2_Sub#18
p. 402
B.2.2.2.19
SBFD#1_DUMacro_FR2_Sub#19
p. 403
B.2.2.2.20
SBFD#1_DUMacro_FR2_Sub#20
p. 404
B.2.2.2.21
SBFD#1_DUMacro_FR2_Sub#21
p. 405
B.2.3
SBFD Deployment Case 3-2 (FR1)
p. 406
B.2.3.1
2-layer Scenario B (FR1)
p. 406
B.2.3.1.1
SBFD#3-2_ScenarioB_FR1_Sub#1
p. 406
B.2.3.1.2
SBFD#3-2_ScenarioB_FR1_Sub#2
p. 408
B.2.3.1.3
SBFD#3-2_ScenarioB_FR1_Sub#3
p. 410
B.2.3.1.4
SBFD#3-2_ScenarioB_FR1_Sub#4
p. 412
B.2.3.1.5
SBFD#3-2_ScenarioB_FR1_Sub#5
p. 414
B.2.3.1.6
SBFD#3-2_ScenarioB_FR1_Sub#6
p. 415
B.2.3.1.7
SBFD#3-2_ScenarioB_FR1_Sub#7
p. 416
B.2.3.1.8
SBFD#3-2_ScenarioB_FR1_Sub#8
p. 417
B.2.3.1.9
SBFD#3-2_ScenarioB_FR1_Sub#9
p. 418
B.2.3.1.10
SBFD#3-2_ScenarioB_FR1_Sub#10
p. 419
B.2.3.1.11
SBFD#3-2_ScenarioB_FR1_Sub#11
p. 419
B.2.3.1.12
SBFD#3-2_ScenarioB_FR1_Sub#12
p. 420
B.2.4
SBFD Deployment Case 4 (FR1)
p. 421
B.2.4.1
Urban Macro (0% grid shift)
p. 421
B.2.4.1.1
SBFD#4_UMA_FR1_0%_Sub#1
p. 421
B.2.4.1.2
SBFD#4_UMA_FR1_0%_Sub#2
p. 423
B.2.4.1.3
SBFD#4_UMA_FR1_0%_Sub#3
p. 428
B.2.4.1.4
SBFD#4_UMA_FR1_0%_Sub#4
p. 432
B.2.4.1.5
SBFD#4_UMA_FR1_0%_Sub#5
p. 434
B.2.4.1.6
SBFD#4_UMA_FR1_0%_Sub#6
p. 436
B.2.4.1.7
SBFD#4_UMA_FR1_0%_Sub#7
p. 440
B.2.4.1.8
SBFD#4_UMA_FR1_0%_Sub#8
p. 444
B.2.4.1.9
SBFD#4_UMA_FR1_0%_Sub#9
p. 446
B.2.4.1.10
SBFD#4_UMA_FR1_0%_Sub#10
p. 448
B.2.4.1.11
SBFD#4_UMA_FR1_0%_Sub#11
p. 449
B.2.4.1.12
SBFD#4_UMA_FR1_0%_Sub#12
p. 451
B.2.4.1.13
SBFD#4_UMA_FR1_0%_Sub#13
p. 453
B.2.4.2
Urban Macro (100% grid shift)
p. 455
B.2.4.2.1
SBFD#4_UMA_FR1_100%_Sub#1
p. 455
B.2.4.2.2
SBFD#4_UMA_FR1_100%_Sub#2
p. 457
B.2.4.2.3
SBFD#4_UMA_FR1_100%_Sub#3
p. 462
B.2.4.2.4
SBFD#4_UMA_FR1_100%_Sub#4
p. 466
B.2.4.2.5
SBFD#4_UMA_FR1_100%_Sub#5
p. 468
B.2.4.2.6
SBFD#4_UMA_FR1_100%_Sub#6
p. 470
B.2.4.2.7
SBFD#4_UMA_FR1_100%_Sub#7
p. 474
B.2.4.2.8
SBFD#4_UMA_FR1_100%_Sub#8
p. 478
B.2.4.2.9
SBFD#4_UMA_FR1_100%_Sub#9
p. 480
B.2.4.2.10
SBFD#4_UMA_FR1_100%_Sub#10
p. 482
B.2.4.2.11
SBFD#4_UMA_FR1_100%_Sub#11
p. 483
B.2.4.2.12
SBFD#4_UMA_FR1_100%_Sub#12
p. 485
B.2.4.2.13
SBFD#4_UMA_FR1_100%_Sub#13
p. 487
B.3
System level simulation results of schemes for SBFD
p. 489
B.3.1
SLS results for dynamic SBFD
p. 489
B.3.1.1
Indoor office (FR1)
p. 489
B.3.1.1.1
Dynamic SBFD vs. dynamic TDD
p. 489
B.3.1.1.2
Dynamic SBFD vs. semi-static SBFD
p. 496
B.3.1.2
Urban Macro (FR1)
p. 503
B.3.1.2.1
Dynamic SBFD vs. dynamic TDD
p. 503
B.3.1.2.2
Dynamic SBFD vs. semi-static SBFD
p. 508
B.3.1.3
Dense Urban Macro layer (FR1)
p. 514
B.3.2
SLS results for inter-gNB/inter-UE CLI handling schemes
p. 516
B.4
System level simulation results for dynamic TDD
p. 516
B.4.1A
Inter-gNB CLI scheme 1A: UL Resource Muting-based scheme for measuring the gNB-to-gNB CLI interference covariance matrix
p. 516
B.4.2A
Inter-gNB CLI scheme 2A: Time Domain Scheme using UL slot(s) aligned between gNBs
p. 532
B.4.2B
Inter-gNB CLI scheme 2B: Frequency Domain Coordination Scheme
p. 534
B.4.3A
Inter-gNB CLI scheme 3A: Spatial Domain Coordination Scheme for gNB Tx-Beam Nulling
p. 537
B.4.5A
Inter-gNB CLI scheme 5A: Power Control scheme based on gNB Tx Power Adjustment
p. 538
B.4.5B
Inter-gNB CLI scheme 5B: Power Control scheme based on UE Tx Power Adjustment
p. 549
C
System level simulation calibration
p. 559
C.1
SLS calibration methodology
p. 559
C.2
SLS calibration assumptions
p. 560
D
Link level evaluation for coverage performance
p. 562
D.1
Link level simulation assumptions
p. 562
D.2
Link budget template
p. 564
D.3
Link level evaluation results
p. 564
E
Adjacent channel co-existence evaluation
p. 565
E.1
RAN4 co-existence simulation scenarios
p. 565
E.2
RAN4 co-existence simulation assumptions
p. 565
E.2.1
Deployment
p. 565
E.2.2
Traffic
p. 568
E.2.3
BS RF characteristics
p. 568
E.2.3.1
BS receiver blocking model
p. 570
E.2.3.2
BS ACLR and ACS bandwidth scaling
p. 572
E.2.4
UE RF characteristics
p. 572
E.3
RAN4 co-existence simulation methodology
p. 573
E.3.1
Coexistence evaluation methodology
p. 573
E.3.2
Received signal power model
p. 574
E.3.3
Network grid shift
p. 574
E.3.4
Coupling-loss
p. 574
E.3.5
Transmission power control
p. 574
E.4
Differences in simulation assumptions of RAN1 and RAN4
p. 575
E.4.1
Simulation objectives in RAN1 and RAN4
p. 575
E.4.2
Simulation methodology in RAN1 and RAN4
p. 575
E.4.3
System level differences between RAN1 and RAN4
p. 575
E.4.4
Modelling of adjacent-channel interference in RAN1 and RAN4
p. 577
$
Change history
p. 578