Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 37.857
Word version: 13.1.0
1…
2…
2
References
3
Definitions and abbreviations
4
General description of indoor positioning for UTRA and LTE
5
Evaluation methodology for indoor positioning
6
Baseline performance of existing positioning techniques in indoor environments
7
Studied positioning technology enhancements
8
Conclusions
$
Change History
2
References
p. 6
3
Definitions and abbreviations
p. 8
3.1
Definitions
p. 8
3.2
Abbreviations
p. 9
4
General description of indoor positioning for UTRA and LTE
p. 9
5
Evaluation methodology for indoor positioning
p. 9
5.1
System model for positioning
p. 9
5.1.1
Evaluation scenarios
p. 9
5.1.2
OTDOA assumptions and parameters
p. 13
5.1.3
UTDOA assumptions and parameters
p. 14
5.1.4
D2D aided positioning - assumptions and parameters
p. 14
5.2
Performance metrics
p. 15
5.2.1
Horizontal accuracy
p. 15
5.2.2
Vertical accuracy
p. 15
6
Baseline performance of existing positioning techniques in indoor environments
p. 15
6.1
Simulation results for horizontal positioning accuracy
p. 15
6.1.1
Case 1: Outdoor macro + outdoor small cell deployment scenarios
p. 16
6.1.1.1
Case 1.A. Outdoor macro + 0 small cells
p. 16
6.1.1.2
Case 1.B. Outdoor macro + 4 small cells
p. 18
6.1.1.3
Case 1.C. Outdoor macro + 10 small cells
p. 20
6.1.2
Case 2: Outdoor macro + indoor small cell deployment scenarios
p. 21
6.1.2.1
Outdoor macro + dense small cells
p. 21
6.1.2.2
Case 2a: Outdoor macro + sparse small cells
p. 23
6.1.3
Summary for 50m Horizontal Error
p. 25
6.2
Simulation results for vertical positioning accuracy
p. 26
6.2.1
Case 1: Outdoor macro + outdoor small cell deployment scenarios
p. 26
6.2.1.1
Case 1.A. Outdoor macro + 0 small cells
p. 26
6.2.1.2
Case 1.B. Outdoor macro + 4 small cells
p. 27
6.2.1.3
Case 1.C. Outdoor macro + 10 small cells
p. 29
6.2.2
Case 2: Outdoor macro + indoor small cell deployment scenarios
p. 31
6.2.2.1
Outdoor macro + dense small cells
p. 31
6.2.2.2
Case 2a: Outdoor macro + sparse small cells
p. 34
7
Studied positioning technology enhancements
p. 35
7.1
RAT-dependent positioning technologies
p. 35
7.1.1
OTDOA enhancements
p. 35
7.1.1.1
Enhanced Positioning Reference Signals (PRS)
p. 36
7.1.1.1.1
Randomization of frequency shift
p. 36
7.1.1.1.1.1
Evaluation Results
p. 37
7.1.1.1.1.1.2
Backward compatibility
p. 38
7.1.1.1.1.1.3
Specification impacts
p. 39
7.1.1.1.2
Subframe-based variation of frequency shift
p. 39
7.1.1.1.3
Randomization of PRS muting pattern
p. 40
7.1.1.1.4
PRS muting pattern
p. 40
7.1.1.1.5
PRS backward compatibility (method 1)
p. 41
7.1.1.1.6
PRS Backward capability (method 2)
p. 41
7.1.1.1.7
Enhancements for the same PCI case (method 1)
p. 41
7.1.1.1.7.1
Evaluation results
p. 43
7.1.1.1.8
Enhancements for the same PCI case (method-2)
p. 44
7.1.1.1.9
Additional enhancements for the same PCI case (method 3)
p. 44
7.1.1.1.10
Enhanced PRS using Tx antenna diversity
p. 44
7.1.1.1.11
Positioning Reference Signals (PRS) in unlicensed bands
p. 45
7.1.1.1.12
Dynamic PRS configuration adaptation
p. 45
7.1.1.1.13
CRS together with PRS for RSTD measurements [48][49]
p. 45
7.1.1.1.14
EB/FD-MIMO based positioning enhancement [50][51]
p. 46
7.1.1.2
Enhanced RSTD measurements
p. 47
7.1.1.2.1
UE inter-frequency RSTD calibration accuracy reporting
p. 47
7.1.1.2.2
Reference cell selection improvements
p. 51
7.1.1.2.3
PRS interference cancellation (IC) techniques
p. 54
7.1.1.3
Enhanced RSTD reporting
p. 56
7.1.1.3.1
Enhanced RSTD quantization and additional signalling support
p. 56
7.1.1.3.2
Reduction of RSTD quantization error
p. 57
7.1.1.3.3
Enhanced RSTD measurement quality report
p. 57
7.1.1.3.4
RSTD report via RRC
p. 57
7.1.1.4
Enhancements for wideband PRS [48][53][54]
p. 57
7.1.2
D2D aided positioning
p. 60
7.1.2.1
D2D Aided Positioning Scenarios
p. 60
7.1.2.2
D2D aided positioning techniques
p. 60
7.1.2.3
Potential Enhancements
p. 61
7.1.2.4
Evaluation results for D2D aided positioning
p. 61
7.1.2.4.1
D2D-aided positioning by proximity detection
p. 61
7.1.2.4.2
D2D-aided positioning by multilateration
p. 63
7.1.3
E-CID enhancements
p. 64
7.1.4
Enhancement for UE Rx-Tx measurement over multiple serving cells
p. 64
7.2
RAT-independent positioning technologies
p. 65
7.2.1
Terrestrial beacon systems (TBS)
p. 65
7.2.1.1
TBS evaluation scenarios
p. 65
7.2.1.2
TBS configuration parameters
p. 67
7.2.1.3
TBS simulation results
p. 67
7.2.1.4
Summary for 50m horizontal error
p. 68
7.2.1.5
Terrestrial beacon systems (TBS) impacts
p. 69
7.2.1.5.1
Architecture impacts
p. 69
7.2.1.5.2
Messaging/Protocol impacts
p. 69
7.2.1.5.3
Requirements impact with TBS option 2
p. 71
7.2.1.5.4
Requirements impact with TBS option 1
p. 71
7.2.1.5.5
TBS option 2 coexistence
p. 71
7.2.2
Wi-Fi/Bluetooth based positioning
p. 72
7.2.2.1
Fine timing measurements (FTM) for Wi-Fi aided positioning
p. 73
7.2.3
Barometric pressure sensor positioning
p. 74
7.2.4
Specification impacts for Wi-Fi, BT and barometric pressure sensor positioning
p. 75
7.2.4.1
Information to be transferred between SMLC and UE
p. 75
7.2.4.2
E-UTRAN specifications impact
p. 77
7.2.4.3
UTRAN specifications impact
p. 79
7.2.5
IMU sensor based positioning
p. 80
8
Conclusions
p. 81
$
Change History
p. 82