Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 36.885
Word version: 14.0.0
0…
2…
2
References
3
Definitions, symbols and abbreviations
4
V2X operation scenarios
5
Technical support for V2V
6
Technical support for V2I/N
7
Technical support for V2P
8
Architecture and high level procedures for V2X
9
Evaluation results
10
Coexistence with DSRC/IEEE 802.11p in the same channel
11
Conclusions
A
Evaluation methodology
B
Detailed evaluation results for PC5-based V2V
C
Detailed evaluation results for Uu-based V2V
D
Detailed evaluation results for Uu-based V2I/N
E
Detailed evaluation results for PC5-based V2I/N
F
Detailed evaluation results for PC5-based V2P
G
Details of latency analysis
H
Traffic characteristics of CAM
$
Change history
2
References
p. 6
3
Definitions, symbols and abbreviations
p. 7
3.1
Definitions
p. 7
3.2
Symbols
p. 8
3.3
Abbreviations
p. 8
4
V2X operation scenarios
p. 8
4.1
Scenario 1
p. 8
4.1.1
General description
p. 8
4.1.2
Operation aspects
p. 9
4.2
Scenario 2
p. 10
4.2.1
General description
p. 10
4.2.2
Operation aspects
p. 11
4.3
Scenario 3
p. 12
4.3.1
General description
p. 12
4.3.1.1
Scenario 3A
p. 12
4.3.1.2
Scenario 3B
p. 13
4.3.2
Operation aspects
p. 13
5
Technical support for V2V
p. 14
5.1
PC5 interface
p. 14
5.1.1
Resource allocation
p. 14
5.1.1.1
Resource pool
p. 15
5.1.1.2
Resource control/selection mechanism
p. 16
5.1.2
Handling high doppler case
p. 18
5.1.3
Synchronization
p. 19
5.2
Uu interface
p. 20
5.2.1
Downlink enhancements
p. 20
5.2.2
Uplink enhancements
p. 22
5.2.1.1
Multiple SPS configurations
p. 23
5.2.1.2
UE assistance for SPS
p. 23
5.2.1.3
UE informs eNB when SPS resources are not used
p. 23
6
Technical support for V2I/N
p. 24
6.1
PC5 interface
p. 24
6.2
Uu interface
p. 24
7
Technical support for V2P
p. 24
7.1
PC5 interface
p. 24
7.2
Uu interface
p. 25
8
Architecture and high level procedures for V2X
p. 25
8.1
Local breakout for V2X
p. 25
8.2
MBMS for V2X
p. 26
8.2.1
Delivery of V2x messages via MBMS
p. 26
8.2.1.1
Architecture
p. 26
8.2.1.2
Signalling flow
p. 26
8.2.2
Support of small and variable areas in V2X
p. 27
8.2.2.1
Issues
p. 27
8.2.2.2
Solutions
p. 28
8.2.2.2.1
Solution for solving issue 1
p. 28
8.2.2.2.2
Solutions for solving issue 2
p. 28
8.2.3
Localized MBMS
p. 31
8.2.3.1
Deployment options of localized MBMS based on implementation
p. 31
8.2.3.1.1
Localized V2x server and MBMS - Co-located with the eNB
p. 31
8.2.3.1.2
Localized V2x server and MBMS - Not co-Located with the eNB
p. 32
8.2.3.1.3
Issues for localized MBMS based on implementation
p. 32
8.2.3.2
Options of localized user plane MBMS CN functions
p. 33
8.2.3.2.1
Localized V2x server and LME - Co-located with the eNB
p. 33
8.2.3.2.2
Localized V2x server and LME - Not co-Located with the eNB
p. 34
8.2.3.3
V2x server deployment options
p. 34
8.3
Multiple operator support in V2X
p. 34
9
Evaluation results
p. 35
9.1
Capacity analysis
p. 35
9.1.1
PC5-based V2V
p. 35
9.1.2
Uu-based V2V
p. 35
9.1.3
Uu-based V2I/N
p. 37
9.1.4
PC5-based V2I/N
p. 37
9.1.5
PC5-based V2P
p. 39
9.2
Latency analysis
p. 41
9.2.1
Evaluation of overall latency
p. 41
9.2.2
Observations
p. 54
9.3
Power consumption analysis
p. 54
10
Coexistence with DSRC/IEEE 802.11p in the same channel
p. 59
11
Conclusions
p. 59
A
Evaluation methodology
p. 60
A.1
System level simulation assumptions
p. 60
A.1.1
Evaluation scenarios
p. 60
A.1.2
UE drop and mobility model
p. 62
A.1.3
eNB and RSU deployment
p. 64
A.1.4
Channel model
p. 66
A.1.5
Traffic model
p. 68
A.1.6
Performance metric
p. 69
A.2
Link level simulation assumptions
p. 70
B
Detailed evaluation results for PC5-based V2V
p. 72
B.1
Simulation assumptions
p. 72
B.2
Simulation results
p. 80
C
Detailed evaluation results for Uu-based V2V
p. 102
C.1
Simulation assumptions
p. 102
C.2
Simulation results
p. 110
D
Detailed evaluation results for Uu-based V2I/N
p. 127
D.1
Simulation assumptions
p. 127
D.2
Simulation results
p. 129
E
Detailed evaluation results for PC5-based V2I/N
p. 132
E.1
Simulation assumptions
p. 132
E.2
Simulation results
p. 138
F
Detailed evaluation results for PC5-based V2P
p. 167
F.1
Simulation assumptions
p. 167
F.2
Simulation results
p. 174
G
Details of latency analysis
p. 204
G.1
Scenarios for latency analysis
p. 204
G.1.1
Latency decomposition of scenarios
p. 204
G.2
Analysis of latency component
p. 206
G.2.1
Scheduling policy and parameter values
p. 206
G.2.2
Analysis of each component
p. 207
G.2.2.1
L-RRC: RRC_IDLE to RRC_CONNECTD and data bearer setup
p. 207
G.2.2.2
L-SL: SL transport between two UEs
p. 208
G.2.2.3
L-UL_sps: UE to eNB via UL
p. 209
G.2.2.4
L-UL_dynamic_nobsr: UE to eNB via UL with dynamic scheduling without a separate BSR
p. 210
G.2.2.5
L-UL_dynamic_bsr: UE to eNB via UL with dynamic scheduling with a separate BSR
p. 210
G.2.2.6
L-NW_uc: Network processing: from eNB (via ITS server) to eNB without passing through BM-SC (to use unicast DL)
p. 211
G.2.2.7
L-NW_mbms: Network processing: from eNB (via ITS server) to eNB with passing through BM-SC (to use MBMS DL)
p. 211
G.2.2.8
L-NW_scptm: Network processing: from eNB (via ITS server) to eNB with passing through BM-SC (to use SCPTM DL)
p. 212
G.2.2.9
L-DL_uc: eNB to UE via unicast DL
p. 212
G.2.2.10
L-DL_mbms: eNB to UE via MBMS DL
p. 213
G.2.2.11
L-DL_scptm: eNB to UE via SCPTM DL
p. 213
G.2.2.12
L-paging: Reception of paging message
p. 214
G.2.2.13
L-SL_config: Reception of sidelink configuration via dedicated signaling
p. 214
G.2.2.14
L-RSU: RSU processing
p. 215
H
Traffic characteristics of CAM
p. 215
$
Change history
p. 216