Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 26.804
Word version: 18.1.0
1…
5…
6…
5
Key Topics
5.1
Introduction
5.2
Content Preparation
5.3
Traffic Identification
5.4
Additional/new transport protocols
5.5
Uplink media streaming
5.6
Background traffic
5.7
Content-Aware Streaming
5.8
Network Event usage
5.9
Per-application-authorization
5.10
Support for encrypted and high-value content
5.11
TV-grade mass distribution of unicast Live Services
5.12
Network Slicing Extensions for 5G Media Streaming
5.13
Key Issue #12: 3GPP Service Handler and URLs
5.14
5GMS Application Server configuration and management
5
Key Topics
p. 15
5.1
Introduction
p. 15
5.2
Content Preparation
p. 16
5.2.1
Overview
p. 16
5.2.2
Gap Analysis of 26.512
p. 16
5.2.3
Use-cases
p. 17
5.2.3.1
Basic CMAF/DASH/HLS multi-rate live streaming of user-generated content
p. 17
5.2.4
Collaboration Scenarios
p. 19
5.2.4.1
Content preparation before downlink streaming
p. 19
5.2.4.2
Content preparation after uplink ingest streaming
p. 19
5.2.4.3
Content preparation between uplink ingest and downlink streaming
p. 20
5.2.5
Deployment Architectures
p. 21
5.2.6
Mapping to 5G Media Streaming and High-Level Call Flows
p. 22
5.2.6.1
Call flow for content preparation before downlink streaming
p. 22
5.2.6.2
Call flow for content preparation after uplink streaming
p. 25
5.2.6.3
Baseline call flow for content processing between uplink streaming and downlink streaming
p. 27
5.2.7
Potential open issues
p. 28
5.2.7.1
Open issues in collaboration scenario 1: Content preparation before downlink streaming
p. 28
5.2.7.2
Open issues in collaboration scenario 2: content preparation after uplink streaming
p. 30
5.2.7.3
Open issues in collaboration scenario 3: content preparation between uplink and downlink
p. 30
5.2.8
Candidate Solutions
p. 30
5.2.8.1
Content Preparation Template requirements
p. 30
5.2.8.1.1
Unencrypted single CMAF track to single unencrypted CMAF switching set
p. 30
5.2.8.2
Content Preparation Template candidates
p. 31
5.2.8.2.1
CMAF input format candidate 1: DASH MPD manifest
p. 31
5.2.8.2.2
CMAF input format candidate 2: A new document format
p. 31
5.2.8.2.3
CMAF output format candidate 3: Extended manifest format
p. 31
5.2.8.2.4
CMAF output format candidate 4: Manifest with supplementary encoding parameters document
p. 31
5.2.8.2.5
CMAF output format candidate 5: A document defining both the output manifest and encoding parameters
p. 32
5.2.8.3
Combining the Content Preparation Template candidate solutions
p. 32
5.2.8.4
Combined CMAF input and output formats candidate: NBMP Workflow Description Document
p. 33
5.2.8.5
Address translation for complex pull requests
p. 34
5.2.9
Conclusion and recommendations
p. 35
5.3
Traffic Identification
p. 35
5.3.1
Description
p. 35
5.3.2
Collaboration Scenarios
p. 38
5.3.2.1
General Collaboration Scenarios
p. 38
5.3.2.2
Differentiated Services/ToS-enabled Collaboration Scenarios
p. 39
5.3.3
Deployment Architectures
p. 40
5.3.4
Mapping to 5G Media Streaming and High-Level Call Flows
p. 41
5.3.4.1
General
p. 41
5.3.4.2
Usage of 5-tuples for Traffic Identification
p. 41
5.3.4.3
Usage of ToS Traffic Class for Traffic Identification
p. 43
5.3.4.4
Usage of Packet Flow Descriptions for Traffic Identification
p. 44
5.3.5
Potential open issues
p. 45
5.3.6
Candidate Solutions
p. 46
5.3.6.1
Overview
p. 46
5.3.6.2
Candidate IP-PFS Solution 1: Using IP ToS marking for downlink-only QoS flow mapping
p. 46
5.3.6.3
Candidate IP-PFS Solution 2: Using IP ToS marking for uplink-only QoS flow mapping
p. 46
5.3.6.4
Candidate IP-PFS Solution 3a: Using IP ToS marking for bi-directional QoS flow mapping, initiated by downlink traffic
p. 47
5.3.6.5
Candidate IP-PFS Solution 3b: Using IP ToS marking for bi-directional QoS flow mapping, initiated by downlink traffic
p. 49
5.3.6.6
Candidate IP-PFS Solution 4a: Using ToS marking for bi-directional QoS flow mapping, initiated by uplink traffic
p. 51
5.3.6.7
Candidate IP-PFS Solution 4b: Using ToS marking for bi-directional QoS flow mapping, initiated by uplink traffic
p. 53
5.3.6.8
Candidate IP-PFS Solution 4c: Using ToS marking for bi-directional QoS flow mapping, initiated by uplink traffic
p. 56
5.3.7
Conclusions
p. 58
5.4
Additional/new transport protocols
p. 58
5.4.1
Description
p. 58
5.4.1.1
General
p. 58
5.4.1.2
Performance Considerations for HTTP/3 over 5G Networks
p. 59
5.4.1.3
Performance Considerations for IETF QUIC over 5G networks
p. 60
5.4.1.4
Management Considerations for HTTP/3 in 5G networks
p. 60
5.4.1.5
HTTP/3 client operation with an HTTP/3 server
p. 61
5.4.1.6
QLOG metrics reporting for HTTP/3 and QUIC
p. 61
5.4.2
Collaboration Scenarios
p. 62
5.4.2.1
General
p. 62
5.4.2.2
HTTP/3 collaboration for downlink media streaming
p. 62
5.4.2.3
Collaboration for uplink media streaming using HTTP/3
p. 62
5.4.3
Deployment Architectures
p. 63
5.4.3.1
General
p. 63
5.4.3.2
HTTP/3 deployment in downlink media streaming
p. 63
5.4.3.3
HTTP/3 deployment in uplink media streaming
p. 64
5.4.4
Mapping to 5G Media Streaming and High-Level Call Flows
p. 64
5.4.4.1
General
p. 64
5.4.5
Potential open issues
p. 64
5.4.5.1
Introduction
p. 64
5.4.5.2
Streaming Protocols taking advantage of HTTP/3 capabilities
p. 64
5.4.5.3
3GPP-specific impediments to HTTP/3 deployment
p. 64
5.4.5.4
Adaptive Streaming clients operating on top of HTTP/3 capabilities
p. 65
5.4.5.5
5GMS Operation taking advantage of HTTP/3 capabilities
p. 65
5.4.5.6
Addition of HTTP/3 as a supported HTTP version in 3GPP specifications
p. 66
5.4.5.7
Pace of HTTP/3 deployment in 3GPP environments
p. 66
5.4.6
Candidate Solutions
p. 66
5.4.6.1
Metrics reporting using QLOG events
p. 66
5.5
Uplink media streaming
p. 67
5.5.1
Description
p. 67
5.5.1.1
Overview
p. 67
5.5.1.2
Gap analysis of TS 26.501
p. 67
5.5.1.3
Gap analysis of TS 26.512
p. 68
5.5.1.4
Gap analysis between TS 26.238 (FLUS) and TS 26.512 (5G Media Streaming)
p. 68
5.5.2
Collaboration Scenarios
p. 69
5.5.2.1
Overview
p. 69
5.5.2.2
Collaboration Scenario 1
p. 69
5.5.2.3
Collaboration Scenario 2
p. 70
5.5.2.4
Collaboration Scenario 3
p. 70
5.5.2.5
Collaboration Scenario 4
p. 71
5.5.2.6
Collaboration Scenario 5
p. 71
5.5.2.7
Collaboration Scenario 6
p. 72
5.5.3
Deployment Architectures
p. 72
5.5.4
Mapping to 5G Media Streaming and High-Level Call Flows
p. 73
5.5.4.1
Collaboration scenario 1 call flow
p. 73
5.5.4.2
Collaboration scenario 2 call flow
p. 74
5.5.4.3
Collaboration scenario 3 call flow
p. 75
5.5.4.4
Collaboration scenario 4 call flow
p. 77
5.5.4.5
Collaboration scenario 5 call flow
p. 79
5.5.4.6
Collaboration scenario 6 call flow
p. 80
5.5.5
Potential open issues
p. 81
5.5.5.1
Potential open issues in 5G Media Streaming stage 3
p. 81
5.5.5.2
Potential open issues compared with FLUS
p. 82
5.5.5.2.1
General
p. 82
5.5.5.2.2
Discussion 1
p. 82
5.5.5.2.3
Discussion 2
p. 82
5.5.5.2.4
Discussion 3
p. 83
5.5.6
Candidate Solutions
p. 83
5.5.6.1
Content egest protocols
p. 83
5.5.6.2
Content Publishing Configuration API
p. 84
5.5.6.3
Content Publishing Configuration Template
p. 84
5.5.6.4
Uplink entry point
p. 85
5.5.7
Conclusion
p. 86
5.6
Background traffic
p. 87
5.6.1
Description
p. 87
5.6.2
Collaboration Scenarios
p. 87
5.6.3
Deployment Architectures
p. 87
5.6.4
Mapping to 5G Media Streaming and High-Level Call Flows
p. 88
5.6.5
Potential open issues
p. 88
5.6.6
Candidate Solutions
p. 88
5.6.6.1
Existing APIs to provision Background Data Transfer
p. 88
5.6.6.2
Potential Solution
p. 89
5.6.7
Conclusion
p. 90
5.7
Content-Aware Streaming
p. 90
5.7.1
Description
p. 90
5.7.2
Collaboration Scenarios
p. 92
5.7.3
Deployment Architectures
p. 93
5.7.4
Mapping to 5G Media Streaming and High-Level Call Flows
p. 93
5.7.5
Potential open issues
p. 93
5.7.6
Candidate Solutions
p. 94
5.8
Network Event usage
p. 94
5.8.1
Description
p. 94
5.8.1.1
Events exposed by 5GMS AF
p. 94
5.8.1.2
Events consumed by 5GMS AF
p. 94
5.8.2
Collaboration Scenarios
p. 95
5.8.3
Deployment Architectures
p. 95
5.8.4
Mapping to 5G Media Streaming and High-Level Call Flows
p. 96
5.8.5
Potential open issues
p. 97
5.8.6
Candidate Solution
p. 97
5.8.6.1
UE Data Collection via Direct and Indirect Methods
p. 97
5.8.6.2
AF Collection of CDN Access Logs
p. 99
5.8.6.3
Candidate media-related information for Event Exposure
p. 99
5.9
Per-application-authorization
p. 100
5.9.1
Description
p. 100
5.9.1.1
General
p. 100
5.9.1.2
OAuth 2.0
p. 100
5.9.2
Collaboration Scenarios
p. 101
5.9.2.1
Collaboration A: UE hosting multiple Applications
p. 101
5.9.2.2
Collaboration B: Applications with multiple subscription levels
p. 102
5.9.3
Role distribution in the 5GMS deployments
p. 102
5.9.4
Mapping to 5G Media Streaming and High-Level Call Flows
p. 103
5.9.5
Potential open issues
p. 103
5.9.6
Candidate Solutions
p. 104
5.9.6.1
General
p. 104
5.9.6.2
Solution 1: Use of a Callback for authorization
p. 104
5.9.6.3
Solution 2: Time-limited authorization token provisioning
p. 105
5.9.7
Conclusions
p. 106
5.10
Support for encrypted and high-value content
p. 106
5.10.1
Description
p. 106
5.10.2
Collaboration Scenarios
p. 107
5.10.3
Deployment Architectures
p. 107
5.10.4
Mapping to 5G Media Streaming and High-Level Call Flows
p. 108
5.10.5
Potential open issues
p. 108
5.10.6
Candidate Solutions
p. 108
5.11
TV-grade mass distribution of unicast Live Services
p. 108
5.11.1
Description
p. 108
5.11.1.1
General
p. 108
5.11.1.2
Scalability
p. 108
5.11.1.3
Consistent quality
p. 108
5.11.1.4
High bandwidth requirements
p. 109
5.11.1.5
Target latency constraints
p. 110
5.11.1.6
TV Experiences
p. 112
5.11.1.7
Summary of service requirements for Mass grade TV distribution
p. 113
5.11.2
Deployment Architectures
p. 113
5.11.2.1
Distribution of low-latency media streams
p. 113
5.11.2.2
Operation Point - Establishment and Monitoring
p. 113
5.11.3
Collaboration Scenarios
p. 115
5.11.3.1
General
p. 115
5.11.3.2
Distribution of low-latency media streams
p. 115
5.11.4
Mapping to 5G Media Streaming and High-Level Call Flows
p. 116
5.11.4.1
General: Distribution of "Operation Point Services"
p. 116
5.11.4.2
Collaboration 1: MNO provides encoding and packaging
p. 117
5.11.4.3
Collaboration 2: MNO provides DASH distribution
p. 117
5.11.4.4
Collaboration 3: MNO acts as CDN
p. 117
5.11.4.5
Operation Point example
p. 118
5.11.5
Potential open issues
p. 118
5.11.6
Candidate Solutions
p. 119
5.11.7
Conclusions
p. 119
5.12
Network Slicing Extensions for 5G Media Streaming
p. 120
5.12.1
Description
p. 120
5.12.1.1
Overview
p. 120
5.12.1.2
Network Slicing Extensions in SA4
p. 121
5.12.2
Collaboration Scenarios
p. 122
5.12.3
Deployment Architectures
p. 123
5.12.4
Mapping to 5G Media Streaming and High-Level Call Flows
p. 123
5.12.5
Potential open issues
p. 123
5.12.6
Candidate Solutions
p. 123
5.12.6.1
Network slices and Operation Points provisioned at M1
p. 123
5.12.7
Conclusion
p. 125
5.13
Key Issue #12: 3GPP Service Handler and URLs
p. 125
5.13.1
Description
p. 125
5.13.2
Collaboration Scenarios and Deployment Architectures
p. 127
5.13.3
Mapping to 5G Media Streaming and high-level call flows
p. 128
5.13.4
Potential open issues
p. 129
5.13.4.1
Overview
p. 129
5.13.4.2
Network-based resolution
p. 131
5.13.4.3
UE-based solution with optional network-based resolution
p. 132
5.13.5
Candidate Solutions - 3GPP Service and URL handler
p. 134
5.13.5.1
Solution 1: 3GPP Service and HTTP URL handler
p. 134
5.13.5.2
Solution 2: Extended Media Service Application URL
p. 135
5.13.5.3
Solution 3: Dedicated URL and DNS Resolution
p. 135
5.13.5.4
Assessment of solutions
p. 136
5.13.5.5
Open issues
p. 136
5.13.6
Specific case: MBMS-ROM Service + CMAS-based launch of service
p. 137
5.13.7
Conclusion
p. 139
5.14
5GMS Application Server configuration and management
p. 139
5.14.1
Description
p. 139
5.14.1.1
5GMS AS configuration
p. 139
5.14.1.2
5GMS AS management
p. 140
5.14.2
Deployment architectures
p. 140
5.14.3
Collaboration scenarios
p. 141
5.14.4
Mapping to 5G Media Streaming and high-level call flows
p. 142
5.14.4.1
Configuration of 5GMSd AS
p. 142
5.14.4.2
Configuration of 5GMSu AS
p. 143
5.14.4.3
Management of 5GMS AS
p. 145
5.14.5
Potential open issues
p. 146
5.14.6
Candidate solutions
p. 147
5.14.6.1
Configuration of 5GMS AS
p. 147
5.14.6.2
Management of AS
p. 148
5.14.7
Conclusion and recommendations
p. 148