Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 25.903
Word version: 18.0.0
0…
2…
2
References
3
Definitions, symbols and abbreviations
3.1
Definitions
3.2
Symbols
3.3
Abbreviations
4
Technical concepts
4.1
New DPCCH slot format
4.2
Uplink DPCCH gating
4.3
SIR_target reduction
4.4
CQI reporting reduction
4.5
DRX at the UE
4.6
Restricted HS-SCCH
4.7
HS-SCCH-less operation
4.8
Reduced complexity HS-SCCH-less operation
4.A
Summary of technical concepts and possible combinations
5
Technical solution
$
Change history
2
References
p. 7
3
Definitions, symbols and abbreviations
p. 8
3.1
Definitions
p. 8
3.2
Symbols
p. 8
3.3
Abbreviations
p. 8
4
Technical concepts
p. 9
4.1
New DPCCH slot format
p. 10
4.1.1
Description of the concept
p. 10
4.1.1.1
General description
p. 10
4.1.1.2
Detailed proposals
p. 12
4.1.1.2.1
SIR target adjustment
p. 13
4.1.1.2.2
CPC initiation and termination
p. 13
4.1.2
Analysis of the concept
p. 14
4.1.2.1
Simulation results on UL TPC error rate
p. 14
4.1.2.2
Simulation results on other UL channels
p. 17
4.1.2.2.1
CQI transmission
p. 19
4.1.2.2.2
HARQ-ACK transmission
p. 26
4.1.2.2.3
Observations from simulations of HS-DPCCH performance in sub-clauses 4.1.2.2.1 and 4.1.2.2.2
p. 31
4.1.2.3
Conclusions from TPC performance (sub-clause 4.1.2.1) and HS-DPCCH performance (sub-clause 4.1.2.2)
p. 32
4.1.2.4
Power control delay
p. 32
4.1.3
Benefits of the concept
p. 33
4.1.4
Open issues of the concept
p. 33
4.2
Uplink DPCCH gating
p. 33
4.2.1
Description of the concept
p. 33
4.2.1.1
General principle
p. 34
4.2.1.2
Basic packet traffic example
p. 34
4.2.1.3
VoIP traffic example
p. 34
4.2.1.4
Operation of the uplink DPCCH gating
p. 35
4.2.2
Analysis of the concept
p. 37
4.2.2.1
Power control stability
p. 37
4.2.2.2
F-DPCH performance
p. 40
4.2.2.3
Uplink link performance
p. 44
4.2.2.3.1
Additional link level results
p. 46
4.2.2.3.2
Link level results for CQI decoding and for large TB sizes
p. 54
4.2.2.3.3
Preamble detection link level result for uplink DPCCH gating with long gating gap
p. 60
4.2.2.4
System performance
p. 62
4.2.2.4.1
Simulation assumptions
p. 62
4.2.2.4.2
VoIP results with and without gating - 2 ms TTI
p. 62
4.2.2.4.3
VoIP results with and without gating - 10 ms TTI and packet bundling
p. 64
4.2.2.4.4
VoIP results - Summary
p. 66
4.2.2.4.5
Impact of inactive users to cell throughput
p. 66
4.2.2.4.6
System-level performance with high-velocity UEs
p. 68
4.2.2.5
UE battery saving calculations
p. 70
4.2.3
Benefits of the concept
p. 73
4.2.4
Open issues of the concept
p. 73
4.3
SIR_target reduction
p. 73
4.3.1
Description of the concept
p. 73
4.3.1.1
L1 signalling approach
p. 73
4.3.1.1.1
Interworking aspects
p. 75
4.3.1.1.2
Handling of VoIP traffic
p. 75
4.3.1.2
L2 signalling approach
p. 76
4.3.1.2.1
New parameters for L2 signalling approach
p. 77
4.3.1.3
Approach with predefined/configured rules
p. 77
4.3.2
Analysis of the concept
p. 78
4.3.2.1
Simulation of the concept
p. 78
4.3.2.1.1
Simulation assumptions
p. 78
4.3.2.1.2
Simulation results
p. 79
4.3.2.2
Noise rise caused by UL DPCCH
p. 81
4.3.2.3
Potential gain in terms of number of additional users & UL noise rise
p. 82
4.3.2.4
Reactivation delay
p. 83
4.3.2.5
Signalling load
p. 83
4.3.2.6
CQI Performance for boosting HS-DPCCH power offset to DPCCH
p. 83
4.3.2.6.1
Simulations assumptions
p. 83
4.3.2.6.2
Simulations results
p. 84
4.3.3
Benefits of the concept
p. 85
4.3.4
Open issues of the concept
p. 86
4.4
CQI reporting reduction
p. 86
4.4.1
Description of the concept
p. 86
4.4.1.1
L1 signalling approach for CQI off
p. 86
4.4.1.1.1
Interworking aspects
p. 87
4.4.1.2
L2 signalling approach for CQI off
p. 87
4.4.1.2.1
New parameters for L2 signalling approach for CQI off
p. 88
4.4.1.3
Predefined/configured rules for CQI reporting reduction
p. 88
4.4.2
Analysis of the concept
p. 89
4.4.2.1
Gain in terms of number of additional users & UL noise rise
p. 89
4.4.2.2
Signalling load
p. 89
4.4.3
Benefits of the concept
p. 89
4.4.4
Open issues of the concept
p. 90
4.5
DRX at the UE
p. 90
4.5.1
Description of the concept
p. 90
4.5.2
Analysis of the concept
p. 90
4.5.2.1
Timing, with 2 ms E-DCH TTI
p. 90
4.5.2.1.1
Background
p. 90
4.5.2.1.2
DRX mode 2/8
p. 91
4.5.2.1.3
DRX mode 1/8
p. 92
4.5.2.1.4
DRX mode 1/16 and beyond
p. 93
4.5.2.1.5
DRX mode 2/8, in a 2 way soft handover
p. 93
4.5.2.1.6
DRX mode 1/8, in a 2 way soft handover
p. 94
4.5.2.1.7
DRX mode 1/16, in a 2 way soft handover
p. 94
4.5.2.2
Downlink scheduler performance
p. 95
4.5.2.2A
Timing, with 10 ms E-DCH TTI
p. 96
4.5.2.2A.1
Background
p. 96
4.5.2.2A.2
DRX mode 1/2
p. 97
4.5.2.2A.3
DRX mode 1/3
p. 97
4.5.2.2A.4
DRX mode 1/4
p. 97
4.5.2.2A.5
DRX mode 1/4, in a 2 way soft handover
p. 98
4.5.2.3
Impact of DRX in demodulation performance
p. 99
4.5.2.3.1
Simulation assumptions
p. 99
4.5.2.3.2
Simulation results
p. 101
4.5.3
Benefits of the concept
p. 102
4.5.4
Open issues of the concept
p. 102
4.6
Restricted HS-SCCH
p. 102
4.6.1
Description of the concept
p. 102
4.6.1.1
HARQ Operation and Signalling
p. 103
4.6.1.2
Signalling of transport format
p. 103
4.6.1.3
Coding for HS-SCCH
p. 104
4.6.1.4
HS-SCCH physical channel structure
p. 105
4.6.1.5
UE reception of the restricted HS-SCCH
p. 106
4.6.2
Analysis of the concept
p. 106
4.6.3
Benefits of the concept
p. 107
4.6.4
Open issues of the concept
p. 107
4.6.4.1
Unexpected and Erroneous Events
p. 107
4.6.4.1.1
ACK/NACK not received in response to a new transmission
p. 107
4.6.4.1.2
Buffer corruption
p. 107
4.6.4.1.3
HS-SCCH misdetection followed by ACK false alarm
p. 108
4.6.4.1.4
HS-SCCH misdetection followed by NACK false alarm
p. 108
4.7
HS-SCCH-less operation
p. 108
4.7.1
Description of the Concept
p. 108
4.7.2
Analysis of the concept
p. 109
4.7.2.1
Transmission waveform and timing
p. 109
4.7.2.2
UE complexity discussion
p. 110
4.7.2.3
CRC discussion
p. 111
4.7.2.4
VoIP and best effort capacity simulations
p. 112
4.7.2.4.1
Simulation assumptions
p. 112
4.7.2.4.2
Simulation results
p. 113
4.7.3
Benefits of the concept
p. 115
4.7.4
Open issues of the concept
p. 115
4.8
Reduced complexity HS-SCCH-less operation
p. 115
4.8.1
Description of the concept
p. 115
4.8.1.1
HS-SCCH for retransmissions with the reduced complexity HS-SCCH-less operation
p. 116
4.8.2
Analysis of the concept
p. 117
4.8.2.1
Timing and operation
p. 117
4.8.2.2
UE Complexity discussion
p. 117
4.8.2.3
Simulation Results
p. 117
4.8.2.3.1
Simulation assumptions
p. 121
4.8.3
Benefits of the concept
p. 122
4.8.4
Open Issues of the concept
p. 122
4.A
Summary of technical concepts and possible combinations
p. 123
4.A.1
Overview of the technical concepts
p. 123
4.A.2
Overview of possible combinations of technical concepts
p. 128
5
Technical solution
p. 130
5.1
Overview of the selected solution
p. 130
5.1.1
New UL DPCCH slot format
p. 131
5.1.2
Discontinuous transmission and reception in CELL_DCH
p. 131
5.1.3
HS-SCCH less operation
p. 133
5.2
Impact on RAN1 specifications
p. 134
5.3
Impact on RAN2 specifications
p. 135
5.4
Impact on RAN3 specifications
p. 136
5.5
Impact on RAN4 specifications
p. 138
5.6
Change requests related to CPC
p. 138
$
Change history
p. 140