Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 25.702
Word version: 12.1.0
1…
4…
9…
4
DCH enhancements
5
MAC layer eEnhancements
6
UE power consumption efficiency
7
Voice over HSPA (VoHSPA)
8
Simulation assumptions
4
DCH enhancements
p. 10
4.1
UpLink (UL) physical layer enhancements
p. 10
4.1.1
UL Frame Early Termination (FET)
p. 10
4.1.1.1
Option 1: Repetition of 10ms TTI frame
p. 10
4.1.1.1.1
Outer Loop Power Control (OLPC) algorithm in UL
p. 10
4.1.1.1.2
UL DTCH/DCCH compression and repetition
p. 11
4.1.1.2
Option 2: New rate matching and interleaving chains
p. 12
4.1.1.2.1
Encoding procedure of UL Early Termination (ET)
p. 13
4.1.1.2.2
Transport block concatenation for single TrCH
p. 13
4.1.1.2.3
CRC attachment
p. 13
4.1.1.2.4
Channel coding
p. 13
4.1.1.2.5
Rate matching and interleaving
p. 14
4.1.1.2.6
Physical channel mapping
p. 14
4.1.1.2.7
Stop data transmission based on early termination indicator
p. 14
4.1.1.2.8
Power adjustment
p. 15
4.1.1.2.9
Early Termination (ET) of both DL and UL data transmission
p. 15
4.1.1.2.10
TFCI based transmission
p. 15
4.1.2
UL DPCCH slot format optimization
p. 16
4.1.2.1
Option 1: Removing TFCI fields
p. 16
4.1.2.2
Option 2: Reusing legacy UL DPCCH slot format
p. 17
4.1.2.3
Option 3: Relocation of TFCI fields
p. 17
4.1.3
UL ACK indication for DL frame Early Termination (ET)
p. 18
4.1.3.1
Option 1: New FET control channel
p. 18
4.1.3.2
Option 2: TDM of FET ACK and TFCI in DPCCH
p. 18
4.1.3.3
Option 3: FET ACK using spared TPC symbols
p. 21
4.2
Downlink physical layer enhancements
p. 22
4.2.1
Downlink Frame Early Termination (FET)
p. 22
4.2.1.1
Option 1: Shortened TTI
p. 22
4.2.1.1.1
DCCH indicator bit, choice of CRC length and transport channels
p. 22
4.2.1.2
Option 2: New rate matching and interleaving
p. 23
4.2.1.2.1
Encoding procedure of DL Early Termination (ET)
p. 23
4.2.1.2.2
Transport block concatenation for single TrCH
p. 24
4.2.1.2.3
CRC attachment
p. 24
4.2.1.2.4
Channel coding
p. 24
4.2.1.2.5
Rate matching and interleaving
p. 24
4.2.1.2.6
Physical channel mapping
p. 25
4.2.1.2.7
Stop data transmission based on early termination indicator
p. 25
4.2.1.2.8
Power adjustment
p. 25
4.2.1.2.9
Early termination of both DL and UL data transmission
p. 26
4.2.1.2.10
TFCI based or BTFD based transmission
p. 26
4.2.1.3
Option 3: Reusing legacy TTI
p. 26
4.2.1.3.1
Joint encoding and FET
p. 26
4.2.1.3.2
Pseudo-flexible RM: Sharing DCCH bits with DTCH
p. 26
4.2.2
DL DPCCH slot format optimization
p. 28
4.2.2.1
Option 1: Removal of dedicated pilots
p. 28
4.2.2.2
Option 2: Removal of dedicated pilots and optimizing TPC field
p. 28
4.2.3
DL ACK indication for UL Frame Early Termination (FET)
p. 31
4.2.3.1
Option 1: ACK as part of DL DPCCH
p. 31
4.2.3.2
Option 2: ACK on a new code channel
p. 31
4.2.3.3
Option 3: ACK using spared TPC symbols
p. 31
4.2.4
DPCH Time Domain Multiplexing (TDM)
p. 33
4.2.4.1
Option 1: TDM at TTI Level
p. 33
4.2.4.2
Option 2: TDM at slot level
p. 36
4.2.5
Considerations of frame timing for DPCH Time Domain Multiplexing solutions
p. 37
4.2.5.1
Background
p. 37
4.2.5.2
Pairing of users
p. 37
4.2.5.2.1
Pairing of long-lived users
p. 38
4.2.5.2.2
Pairing of short-lived users
p. 39
4.2.5.3
Pairing of traversing users
p. 41
4.2.5.4
Pairing with extended soft combining window
p. 42
4.2.5.4.1
Effect of extended soft combining window on UE battery saving
p. 42
4.2.5.4.2
Effect of extended soft combining window on delay budget
p. 42
4.2.5.4.3
Effect on UL timing
p. 43
4.2.5.5
Conclusion on user paring
p. 43
4.2.6
Code-space and UE power efficient Signalling Radio Bearer (SRB) design
p. 44
4.2.6.1
Shared DCH for SRB
p. 44
4.2.6.1.1
SRB on DCH design as used since R99
p. 44
4.2.6.1.2
Shared DCH design
p. 45
4.2.6.1.3
Shared DCH for HSPA
p. 48
4.2.6.1.4
Shared DCH for HSPA with CPC
p. 48
4.2.6.1.5
Shared DCH for enhanced R99
p. 49
5
MAC layer eEnhancements
p. 51
6
UE power consumption efficiency
p. 51
7
Voice over HSPA (VoHSPA)
p. 52
7.1
General overview of CS VoHSPA
p. 52
7.2
VoHSPA details
p. 52
7.2.1
Serving Cell Change (SCC), enhanced SCC, and Node-B-terminated bicasting
p. 52
7.2.2
Mobility
p. 53
7.2.3
Capacity
p. 53
8
Simulation assumptions
p. 54
8.1
Simulation assumptions for Voice over HSPA (VoHSPA)
p. 54
8.1.1
Link simulation assumptions for VoHSPA
p. 54
8.1.1.1
Link simulation assumptions for downlink VoHSPA
p. 54
8.1.1.2
Link simulation assumptions for uplink VoHSPA
p. 57
8.1.2
Link performance metrics for VoHSPA
p. 58
8.1.2.1
Link performance metrics for downlink VoHSPA
p. 58
8.1.2.2
Link Performance metrics for uplink VoHSPA
p. 58
8.1.3
System simulation assumptions for VoHSPA
p. 59
8.1.3.1
System simulation assumptions for downlink VoHSPA
p. 59
8.1.3.2
System simulation assumptions for uplink VoHSPA
p. 61
8.1.4
System performance metrics for VoHSPA
p. 63
8.1.4.1
System performance metrics for downlink VoHSPA
p. 63
8.1.4.2
System performance metrics for uplink VoHSPA
p. 63
8.2
Simulation assumptions for voice over R99 and DCH enhancements
p. 64
8.2.1
Link simulation assumptions for voice over R99 DCH
p. 64
8.2.1.1
Link simulation assumptions for Downlink voice over R99 DCH
p. 64
8.2.1.2
Link simulation assumptions for Uplink voice over R99 DCH
p. 68
8.2.2
Link Performance Evaluation Metrics
p. 69
8.2.2.1
Link Performance metrics for downlink voice over R99 DCH
p. 69
8.2.2.2
Link Performance metrics for uplink voice over R99 DCH
p. 69
8.2.3
System simulation assumptions
p. 70
8.2.3.1
System simulation assumptions for Downlink
p. 70
8.2.3.1.1
Simulation assumptions for Downlink voice over R99 DCH
p. 70
8.2.3.1.2
General system assumptions for Downlink
p. 71
8.2.3.1.3
Simplified simulation methodology for HSDPA throughput from voice-only simulation
p. 72
8.2.3.1.4
Link-to-system mapping for DCH
p. 76
8.2.3.2
System simulation assumptions for Uplink
p. 78
8.2.3.2.1
Simulation assumptions for Uplink voice over R99 DCH
p. 78
8.2.3.2.2
General system assumptions for Uplink
p. 79
8.2.4
System performance evaluation metrics
p. 82
8.2.4.1
System performance metrics for downlink voice over R99 and enhanced DCH
p. 82
8.2.4.2
System performance metrics for uplink voice over R99 and enhanced DCH
p. 82
8.2.5
Link simulation assumptions for voice over enhanced DCH (Solution 1 and 3)
p. 83
8.2.5.1
Link simulation assumptions for Downlink voice over enhanced DCH
p. 83
8.2.5.1.1
Pilot-free DPCCH slot formats
p. 83
8.2.5.1.2
DPDCH Frame Early Termination (FET)
p. 84
8.2.5.2
Link simulation assumptions for Uplink voice over enhanced DCH
p. 86
8.2.5.2.1
DPDCH Frame Early Termination (FET)
p. 86
8.2.5.2.2
Uplink DTCH / DCCH compression and repetition
p. 89
8.2.5.2.3
FET-DPCCH
p. 90
8.2.6
Link simulation assumptions for voice over enhanced DCH (Solution 2 and 4)
p. 92
8.2.6.1
Link simulation assumptions for Downlink voice over enhanced DCH
p. 92
8.2.6.1.1
New proposed slot formats
p. 92
8.2.6.1.2
Early Termination
p. 94
8.2.6.1.3
Others
p. 95
8.2.6.2
Link simulation assumptions for Uplink voice over enhanced DCH
p. 96
8.2.6.2.1
TFCI based transmission
p. 96
8.2.6.2.2
Early Termination (ET)
p. 96
8.2.7
Link Performance Evaluation Metrics for voice over enhanced DCH
p. 98
8.2.8
System simulation assumptions for voice over enhanced DCH (Solution 1 and 3)
p. 99
8.2.9
System simulation assumptions for voice over enhanced DCH (Solution 2 and 4)
p. 99