Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 23.887
Word version: 12.0.0
1…
5…
5
Small Data and Device Triggering Enhancements (SDDTE)
6
Monitoring enhancements (MONTE)
7
UE Power Consumption Optimizations (UEPCOP)
8
Group based feature (GROUP)
9
Conclusions
10
Impacts to normative specifications
A
Evaluation of solutions for UE power saving
$
Change history
5
Small Data and Device Triggering Enhancements (SDDTE)
p. 10
5.1
Small Data Transmission (SDT)
p. 10
5.1.1
Key Issue - Efficient SDT
p. 10
5.1.1.1
Description
p. 10
5.1.1.2
Architectural requirements
p. 10
5.1.1.3
Solutions
p. 10
5.1.1.3.1
Solution: SDT starting from RRC IDLE (E-UTRAN): Use of pre-established NAS security context to transfer the IP packet as NAS signalling without establishing RRC security
p. 10
5.1.1.3.2
Solution: Optimized handling of C-plane connection for Small Data and Device Trigger Transmission without U-plane bearer establishment in E-UTRAN
p. 20
5.1.1.3.3
Solution: Standalone Small Data Service with T5/Tsp and generic NAS transport
p. 24
5.1.1.3.4
Solution: Stateless Gateway for cost efficient transmission of infrequent or frequent small data
p. 31
5.1.1.3.5
Solution: Downlink small data transfer using RRC message
p. 38
5.1.1.3.6
Solution: Small Data Fast Path / Connectionless
p. 41
5.1.1.3.7
Solution: Service Request signalling reduction by RRC message combining
p. 62
5.1.1.3.8
Solution: Optimized Service Request procedure
p. 67
5.1.1.3.9
Solution: Lean Service Request Procedure
p. 71
5.1.1.4
Overall evaluation
p. 73
5.1.2
Key issue - Frequent SDT optimizations
p. 73
5.1.2.1
Description
p. 73
5.1.2.2
Architectural requirements
p. 73
5.1.2.3
Solutions
p. 74
5.1.2.3.1
Solution: Core Network assisted eNB parameters tuning for Small Data Transfer
p. 74
5.1.2.3.2
Solution: Push Proxy/Device Agent Function for reducing heartbeat/keep-alive of applications
p. 77
5.1.2.3.3
Solution: Eliminate keep-alive packet by network-based always-on solution
p. 79
5.2
Device triggering enhancements
p. 81
5.2.1
Key issue - Overload handling and scalability for device triggering
p. 81
5.2.1.1
Description
p. 81
5.2.1.2
Architectural requirements
p. 81
5.2.1.3
Solutions
p. 81
5.2.1.3.1
Solution: Overload control for device triggering
p. 81
5.2.1.4
Overall evaluation
p. 84
5.2.2
Key issue - Support for T5 device triggering
p. 84
5.2.2.1
Description
p. 84
5.2.2.2
Architectural requirements
p. 84
5.2.2.3
Solutions
p. 84
5.2.2.3.1
Solution: Device triggering using T5
p. 84
5.2.2.4
Overall evaluation
p. 86
5.2.3
Key issue - Recalling or replacing previously submitted trigger messages
p. 86
5.2.3.1
Description
p. 86
5.2.3.2
Architectural requirements
p. 86
5.2.3.3
Solutions
p. 87
5.2.3.3.1
Solution: Device trigger recall/replace
p. 87
5.2.3.4
Overall evaluation
p. 91
6
Monitoring enhancements (MONTE)
p. 92
6.1
Key issue - Monitoring
p. 92
6.1.1
Description
p. 92
6.1.2
Architectural requirements
p. 92
6.1.3
Solutions
p. 93
6.1.3.1
Solution: Monitoring via PCC and HSS
p. 93
6.1.3.1.1
General
p. 93
6.1.3.1.2
Flow for Monitoring event configuration
p. 93
6.1.3.1.3
Monitoring event reporting flows
p. 95
6.1.3.1.4
Specific Monitoring Event handling
p. 96
6.1.3.1.4a
Impacts on existing nodes and functionality
p. 96
6.1.3.1.5
Solution evaluation
p. 97
6.1.3.2
Solution : Monitor the association between IMSI - IMEI-SV for a UE
p. 97
6.1.3.2.1
General
p. 97
6.1.3.2.2
Impacts on existing nodes and functionality
p. 98
6.1.3.2.3
Solution evaluation
p. 98
6.1.3.3
Solution - Monitoring via MTC-IWF using Tsp
p. 98
6.1.3.3.1
General description
p. 98
6.1.3.3.2
Impacts on existing nodes and functionality
p. 101
6.1.3.3.3
Solution evaluation
p. 101
6.1.4
Overall evaluation
p. 101
7
UE Power Consumption Optimizations (UEPCOP)
p. 102
7.1
Key issue - UEPCOP
p. 102
7.1.1
Description
p. 102
7.1.2
Architectural requirements
p. 103
7.1.3
Solutions
p. 103
7.1.3.1
Solution: Extended DRX in idle mode
p. 103
7.1.3.1.1
General
p. 103
7.1.3.1.2
Impacts on existing nodes and functionality
p. 106
7.1.3.1.3
Solution evaluation
p. 107
7.1.3.2
Solution: Extending DRX using UE Assistance Information
p. 108
7.1.3.2.1
General
p. 108
7.1.3.2.2
Impacts on existing nodes and functionality
p. 110
7.1.3.2.3
Solution evaluation
p. 110
7.1.3.3
Solution: Power saving state for devices
p. 110
7.1.3.3.1
General
p. 110
7.1.3.3.2
Impacts on existing nodes and functionality
p. 113
7.1.3.3.3
Solution evaluation
p. 113
7.1.3.4
Solution: Attach/detach
p. 114
7.1.3.4.1
Description
p. 114
7.1.3.4.2
Evaluation
p. 114
7.1.3.4.3
Additional solutions using Attach and Detach procedures
p. 114
7.1.3.5
Solution: Transmission delay until better coverage conditions
p. 125
7.1.3.5.1
General
p. 125
7.1.3.5.2
Transmission delay time and signal quality threshold
p. 125
7.1.3.5.3
Impacts on existing nodes and functionality
p. 125
7.1.3.5.4
Solution evaluation
p. 126
7.1.3.6
Solution: Long DRX cycles in connected mode
p. 126
7.1.3.6.1
General
p. 126
7.1.3.6.2
Impacts on existing nodes and functionality
p. 127
7.1.3.6.3
Solution evaluation
p. 127
7.1.3.7
Solution: Factors for determining extended DRX
p. 128
7.1.3.7.1
General
p. 128
7.1.3.7.2
Impacts on existing nodes and functionality
p. 128
7.1.3.7.3
Solution evaluation
p. 128
7.1.4
Overall evaluation
p. 128
8
Group based feature (GROUP)
p. 129
8.1
Key issue - Group based Messaging
p. 129
8.1.1
Description
p. 129
8.1.2
Architectural requirements
p. 129
8.1.3
Solutions
p. 130
8.1.3.1
Solution : Group based messaging using cell broadcast
p. 130
8.1.3.1.1
General
p. 130
8.1.3.1.2
Impacts on existing nodes and functionality
p. 133
8.1.3.1.3
Solution evaluation
p. 134
8.1.3.2
Solution : Group messaging using MBMS
p. 134
8.1.3.2.1
General
p. 134
8.1.3.2.2
Impacts on existing nodes and functionality
p. 137
8.1.3.2.3
Solution evaluation
p. 137
8.1.3.3
Solution : Group based messaging using IP Multicast
p. 138
8.1.3.3.1
General
p. 138
8.1.3.3.2
Impacts on existing nodes and functionality
p. 139
8.1.3.3.3
Solution evaluation
p. 139
8.1.4
Overall evaluation
p. 139
8.2
Key Issue - Group based Ccarging optimizations
p. 139
8.2.1
Description
p. 139
8.2.2
Architectural requirements
p. 139
8.2.3
Solutions
p. 140
8.2.3.1
Solution : Using charging characteristics to control bulk CDR generation
p. 140
8.2.3.1.1
General
p. 140
8.2.3.1.2
Impacts on existing nodes and functionality
p. 140
8.2.3.1.3
Solution evaluation
p. 140
8.2.3.2
Solution: Using PCC rule to control bulk CDR generation
p. 140
8.2.3.2.1
General
p. 140
8.2.3.2.2
Impacts on existing nodes and functionality
p. 141
8.2.3.2.3
Solution evaluation
p. 141
8.2.3.3
Solution: Group ID in CDR
p. 141
8.2.3.3.1
General
p. 141
8.2.3.3.2
Impacts on existing nodes and functionality
p. 141
8.2.3.3.3
Solution evaluation
p. 141
8.2.4
Overall evaluation
p. 141
8.3
Key issue - Group based Policy Control
p. 142
8.3.1
Description
p. 142
8.3.2
Architectural requirements
p. 142
8.3.2.1
Group Based Policing assumptions and limitations
p. 142
8.3.2.2
Architectural assumptions
p. 142
8.3.2.3
Overall architectural requirements
p. 142
8.3.3
Solutions
p. 143
8.3.3.1
Solution: Group Based Policing with Group-AMBR
p. 143
8.3.3.1.1
General
p. 143
8.3.3.1.2
Impacts on existing nodes and functionality
p. 143
8.3.3.1.3
Solution evaluation
p. 144
8.3.4
Overall evaluation
p. 144
8.4
Key Issue - Group based addressing and identifiers
p. 144
8.4.1
Description
p. 144
8.4.2
Architectural requirements
p. 144
8.4.3
Solutions
p. 144
8.4.3.1
Solution: External Group identifiers
p. 144
8.4.3.1.1
General
p. 144
8.4.3.1.2
Impacts on existing nodes and functionality
p. 145
8.4.3.1.3
Solution evaluation
p. 146
8.4.4
Overall evaluation
p. 146
9
Conclusions
p. 146
9.1
Key issue 5.1.2
p. 146
9.2
Key issue 5.2.1
p. 147
9.3
Key issue 5.2.3
p. 147
9.4
Key issue 7.1
p. 147
10
Impacts to normative specifications
p. 147
A
Evaluation of solutions for UE power saving
p. 148
$
Change history
p. 151