Tech-
invite
3GPP
space
IETF
space
21
22
23
24
25
26
27
28
29
31
32
33
34
35
36
37
38
4‑5x
Content for
TR 23.700-91
Word version: 17.0.0
1…
5…
6…
7…
6
Solutions
6
Solutions
p. 34
6.0
Mapping Solutions to Key Issues
p. 34
6.1
Solution #1: Utilization of Pub/Sub model to increase efficiency of data collection
p. 35
6.1.1
High-level Description
p. 35
6.1.2
Impacts on services, entities and interfaces
p. 37
6.2
Solution #2: Remaining aspects on how to ensure that slice SLA is guaranteed
p. 37
6.2.1
Description
p. 37
6.2.1.1
General
p. 37
6.2.1.2
Slice information collection
p. 38
6.2.1.3
Slice load analytics
p. 38
6.2.1.3.1
Input data
p. 39
6.2.1.3.2
Output analytics
p. 39
6.2.1.4
Procedures
p. 40
6.2.1.4.1
NSSF based solution
p. 40
6.2.1.4.2
AMF based solution
p. 45
6.2.1.4.3
Procedures for slice load analytics
p. 49
6.2.2
Impacts on services, entities and interfaces
p. 50
6.3
Solution #3: User consent for UE data collection
p. 50
6.3.1
Description
p. 50
6.3.1.1
General
p. 50
6.3.1.2
Procedure
p. 50
6.3.2
Impacts on services, entities and interfaces
p. 51
6.4
Solution #4: Service Behaviour analytics and Service Experience analytics for NWDAF-assisted RFSP policy
p. 52
6.4.1
Description
p. 52
6.4.1.1
General
p. 52
6.4.1.2
Input data
p. 52
6.4.1.3
Output Analytics
p. 53
6.4.1.4
Procedures
p. 53
6.4.1.4.1
General
p. 53
6.4.2
Impacts on services, entities and interfaces
p. 55
6.5
Solution #5: ML Model sharing architecture
p. 55
6.5.1
Description
p. 55
6.5.2
Procedures
p. 57
6.5.2.1
ML Model exposure procedure
p. 57
6.5.2.2
NWDAF analytics service supporting AIF
p. 59
6.5.3
Impacts on services, entities and interfaces
p. 59
6.6
Solution #6: NWDAF decompose architecture
p. 60
6.6.1
Description
p. 60
6.6.1.1
General
p. 60
6.6.1.2
Architecture
p. 60
6.6.1.3
ML Model Training
p. 60
6.6.1.4
Data analytics
p. 60
6.6.2
Procedures
p. 62
6.6.2.1
Initial ML Model Training
p. 62
6.6.2.2
Analytics Function receives ML model procedure
p. 63
6.6.3
Impacts on services, entities and interfaces
p. 63
6.7
Solution #7: NWDAF functionality Split
p. 64
6.7.1
Description
p. 64
6.7.2
Procedures
p. 65
6.7.3
Impacts on services, entities and interfaces
p. 66
6.8
Solution #8: NWDAF decomposition
p. 66
6.8.1
Description
p. 66
6.8.2
Input Data
p. 67
6.8.3
Output Analytics
p. 67
6.8.4
Procedures
p. 67
6.8.5
Impacts on services, entities and interfaces
p. 69
6.9
Solution #9: Data Management Framework for 5GC
p. 69
6.9.1
Introduction
p. 69
6.9.2
Functional Description
p. 69
6.9.2.1
General
p. 69
6.9.2.2
Data Collection Coordination Function (DCCF)
p. 71
6.9.2.3
Messaging Framework
p. 72
6.9.2.4
Data Repository
p. 73
6.9.3
Procedures for consumers and producers using 3CA and 3PA
p. 75
6.9.4
Impacts on services, entities and interfaces
p. 76
6.10
Solution #10: Handling of mixed and distributed NWDAF deployments
p. 78
6.10.1
High-level Description
p. 78
6.10.2
Procedures
p. 79
6.10.2.1
Registration/Deregistration of the NWDAF serving the UE procedure
p. 79
6.10.2.2
Discovery the NWDAF serving the UE via UDM
p. 80
6.10.2.3
Providing the information of the NWDAF serving the UE to consumers
p. 82
6.10.2.4
Selection of distributed NWDAF and transfer of statistics
p. 83
6.10.3
Impacts on services, entities and interfaces
p. 86
6.11
Solution #11: Two-level Hierarchical NWDAFs Architecture
p. 86
6.11.1
Description
p. 86
6.11.2
Procedures
p. 88
6.11.3
Impacts on services, entities and interfaces
p. 89
6.12
Solution #12: Support for NWDAF interactions within SBA framework
p. 90
6.12.1
Description
p. 90
6.12.1.1
General
p. 90
6.12.1.2
Procedures
p. 92
6.12.2
Impacts on services, entities and interfaces
p. 94
6.13
Solution #13: Time Coordination for Multiple NWDAFs
p. 95
6.13.1
Description
p. 95
6.13.2
Procedures
p. 95
6.13.3
Impacts on services, entities and interfaces
p. 96
6.14
Solution #14: Support flexible Analytics aggregation for multiple NWDAFs
p. 96
6.14.1
Description
p. 96
6.14.2
Procedures
p. 97
6.14.2.1
Distributed analytics aggregation model
p. 97
6.14.2.2
Centralised analytics aggregation model
p. 98
6.14.2.2.1
Centralised aggregation with AP ID (Option B)
p. 98
6.14.2.2.2
Centralised aggregation without AP ID with mapping at service consumer (Option C)
p. 99
6.14.2.2.3
Centralised aggregation with extended list for supporting analytics (Option D)
p. 99
6.14.2.2.4
Centralised aggregation without AP ID with mapping at central NWDAFs (Option E)
p. 100
6.14.2.3
Mixed-Mode analytics aggregation model
p. 100
6.14.3
Impacts on services, entities and interfaces
p. 101
6.15
Solution #15: Data Collection Coordination
p. 101
6.15.1
Description
p. 101
6.15.2
Procedures
p. 103
6.15.2.1
Data collection by using DCCF to control signalling and forward data
p. 103
6.15.2.2
Data collection by using DCCF to control signalling
p. 105
6.15.3
Impacts on services, entities and interfaces
p. 108
6.16
Solution #16: Roles and inter-NWDAF instance cooperation from lower level NWDAF to upper level NWDAF in hierarchical architecture
p. 108
6.16.1
Description
p. 108
6.16.2
Procedure
p. 109
6.16.3
Impacts on services, entities and interfaces
p. 110
6.17
Solution #17: Alternatives for Interactions among Hierarchical NWDAFs
p. 111
6.17.1
Description
p. 111
6.17.2
Procedures
p. 112
6.17.2.1
Interaction Mode#1: Generation based on Plain Collected Data
p. 112
6.17.2.2
Interaction Mode#2: Generation based on Aggregated Collected Data
p. 113
6.17.2.3
Interaction Mode#3: Composed/Aggregated Analytics ID
p. 114
6.17.2.4
Interaction Mode#4: Mixed Collected Data
p. 115
6.17.3
Impacts on services, entities and interfaces
p. 117
6.18
Solution #18: Roles and inter-NWDAF instance cooperation from upper level NWDAF to lower level NWDAF in hierarchical architecture
p. 117
6.18.1
Description
p. 117
6.18.2
Procedure
p. 117
6.18.2.1
Case 1: Inter-NWDAF instance cooperation in hierarchical architecture
p. 118
6.18.2.2
Case 2: Inter-NWDAF instance cooperation in hierarchical architecture
p. 119
6.18.2.3
Case 3: Inter-NWDAF instance cooperation in hierarchical architecture
p. 120
6.18.3
Impacts on services, entities and interfaces
p. 120
6.19
Solution #19: Multiple NWDAFs interactions for analytics consumption and composition related to large areas
p. 121
6.19.1
High-level Description
p. 121
6.19.2
Procedure for NWDAF Interactions
p. 122
6.19.2.1
Procedure for NWDAF as Central Aggregation Point
p. 122
6.19.2.2
Procedure for Mixed Aggregation Points
p. 123
6.19.3
Impacts on services, entities and interfaces
p. 125
6.20
Solution #20: UE abnormal behaviour analytics interaction between multiple NWDAF instances
p. 125
6.20.1
Description
p. 125
6.20.2
Procedures
p. 126
6.20.3
Impacts on services, entities and interfaces
p. 127
6.21
Solution #21: Inter-NWDAF instance cooperation based on NWDAF profile
p. 127
6.21.1
Description
p. 127
6.21.1.1
General
p. 127
6.21.1.2
Procedures
p. 127
6.21.2
Impacts on services, entities and interfaces
p. 128
6.22
Solution #22: mitigation of the load for Data Collection
p. 128
6.22.1
Description
p. 128
6.22.2
Procedures
p. 129
6.22.3
Impacts on services, entities and interfaces
p. 130
6.23
Solution #23: flexible data collection and data analysis for hierarchical NWDAF architecture
p. 130
6.23.1
Description
p. 130
6.23.2
Procedures
p. 131
6.23.2.1
Procedure of multi-NWDAFs assisted analytics and data collection
p. 131
6.23.3
Impacts on services, entities and interfaces
p. 132
6.24
Solution #24: Federated Learning among Multiple NWDAF Instances
p. 132
6.24.1
Description
p. 132
6.24.1.1
General
p. 132
6.24.1.2
General procedure for Federated Learning among Multiple NWDAF Instances
p. 133
6.24.1.3
Procedure for usage of Federated Learning in Abnormal Behaviour
p. 135
6.24.2
Impacts on services, entities and interfaces
p. 136
6.25
Solution #25: Exposing UE mobility analytics for multiple NWDAFs case
p. 136
6.25.1
Introduction
p. 136
6.25.2
Input data
p. 137
6.25.3
Output Analytics
p. 137
6.25.4
Procedures
p. 138
6.25.5
Impacts on services, entities and interfaces
p. 139
6.26
Solution #26: Reselection of NWDAF
p. 139
6.26.1
Description
p. 139
6.26.1.1
General
p. 139
6.26.1.2
Procedure
p. 140
6.26.2
Impacts on services, entities and interfaces
p. 141
6.27
Solution #27: UE data as an input for analytics generation
p. 142
6.27.1
Description
p. 142
6.27.1.1
Principles of the Solution
p. 142
6.27.1.2
UE establishes connection to AF for UE data collection
p. 143
6.27.1.3
UE Data Collection over user plane
p. 144
6.27.1.4
Privacy and Integrity Protection of the Analytic Data
p. 145
6.27.1.5
Authentication of the MNO AF and the UE Application Client
p. 145
6.27.1.6
Correlating UE Application Client data and NWDAF requested input data.
p. 145
6.27.1.7
MNO AF notifications to NWDAF about input data requested.
p. 146
6.27.2
Impacts on services, entities and interfaces
p. 146
6.28
Solution #28: UE assisted analysis for usage of network slice
p. 147
6.28.1
Description
p. 147
6.28.1.1
General
p. 147
6.28.1.2
Input data
p. 148
6.28.1.3
Output Analytics
p. 148
6.28.1.4
Procedure
p. 149
6.28.2
Impacts on services, entities and interfaces
p. 149
6.29
Solution #29: Support UE data as an input for Control Plane analytics
p. 150
6.29.1
Description
p. 150
6.29.2
Input Data
p. 150
6.29.2.1
UE input data for Collective Behaviour
p. 150
6.29.2.2
Application status analytics input
p. 151
6.29.3
Output Analytics
p. 151
6.29.3.1
NF load analytics output
p. 151
6.29.3.2
Application status analytics output
p. 152
6.29.4
Procedures
p. 153
6.29.5
Impacts on services, entities and interfaces
p. 154
6.30
Solution #30: Dispersion Analytics output provided by NWDAF
p. 154
6.30.1
Description
p. 154
6.30.1.1
Dispersion definitions
p. 155
6.30.1.2
General
p. 155
6.30.1.3
Input Data
p. 156
6.30.1.4
Output Analytics
p. 158
6.30.1.4.1
Data Dispersion Analysis
p. 159
6.30.1.4.2
Transactions Dispersion Analysis
p. 160
6.30.1.4.3
Transactions Failure Dispersion Analysis
p. 162
6.30.1.4.4
Dropped Sessions Dispersion Analysis
p. 164
6.30.2
Procedures
p. 165
6.30.3
Assistance to slice load distribution procedure
p. 167
6.30.4
User Data Congestion Mitigation
p. 167
6.30.5
Impacts on services, entities and interfaces
p. 169
6.31
Solution #31 (merging Sol# 48, 49(alternative 2), 50 and 51): NWDAF Assisted UP Optimization for edge computing by extending the existing service experience analytics
p. 169
6.31.1
Description
p. 169
6.31.2
Input Data
p. 170
6.31.3
Output Analytics
p. 171
6.31.4
Procedures
p. 173
6.31.5
Impacts on services, entities and interfaces
p. 174
6.32
Solution #32: Enhancing Existing Mechanisms to Reduce Load and Complexity to Determine Entities serving in Area of Interest
p. 174
6.32.1
High-level Description
p. 174
6.32.2
Procedure for Determining SMFs/AMFs in AoI per TA granularity
p. 175
6.32.3
Procedure for Determining Network Slice Information in AoI
p. 176
6.32.4
Procedure for Determining Applications, DNNs, DNAIs in AoI
p. 177
6.32.5
Impacts on services, entities and interfaces
p. 178
6.33
Solution #33: Signalling and computation load control by sobriety and efficiency mechanisms
p. 178
6.33.1
Description
p. 178
6.33.1.1
Introduction
p. 178
6.33.1.2
Sobriety mechanisms
p. 179
6.33.1.3
Efficiency mechanisms
p. 180
6.33.2
Impacts on services, entities and interfaces
p. 180
6.34
Solution #34: Simplify the redundancy in event report notification for NWDAF data collection
p. 180
6.34.1
General Description
p. 180
6.34.2
Modification on Namf_EventExposure Service
p. 182
6.34.2.1
Namf_EventExposure_Subscribe service operation
p. 182
6.34.2.2
Namf_EventExposure_UnSubscribe service operation
p. 183
6.34.2.3
Namf_EventExposure_Notify service operation
p. 183
6.34.3
Impacts on services, entities and interfaces
p. 184
6.35
Solution #35: Using a dedicated NF for data collection
p. 184
6.35.1
Description
p. 184
6.35.1.1
Introduction
p. 184
6.35.1.2
Data collection procedure from a DCNF
p. 185
6.35.1.3
Data collection procedure from a DCNF by multiple NWDAFs
p. 187
6.35.2
Impacts on services, entities and interfaces
p. 190
6.36
Solution #36: Determining UPFs serving UEs or in Area of Interest
p. 190
6.36.1
High-level Description
p. 190
6.36.2
Impacts on services, entities and interfaces
p. 191
6.37
Solution #37: Reduction of Frequency from NFs
p. 192
6.37.1
General
p. 192
6.37.2
High-level Description
p. 192
6.37.2.1
Signalling Reduction: Data collection of past events
p. 192
6.37.2.2
Data Volume Reduction: Data Collection of aggregated data
p. 192
6.37.3
Exposed NF Data
p. 193
6.37.3.1
Past events
p. 193
6.37.3.2
Aggregated data
p. 193
6.37.4
Procedures
p. 194
6.37.4.1
Data Collection with Signalling Reduction
p. 194
6.37.4.2
Data Collection with Data Volume reduction
p. 195
6.37.5
Impacts on services, entities and interfaces
p. 197
6.38
Solution #38: Enhancement on network exposure to allow data approximation
p. 197
6.38.1
Description
p. 197
6.38.1.1
General
p. 197
6.38.1.2
Procedure to data collection from NFs
p. 198
6.38.1.3
Contents of Nnf_EventExposure_Subscribe operations
p. 198
6.38.1.4
Contents of Nnf_EventExposure_Notify operations
p. 199
6.38.2
Impacts on services, entities and interfaces
p. 200
6.39
Solution #39: Efficient data management for minimizing signalling.
p. 200
6.39.1
Description
p. 200
6.39.2
Procedures
p. 201
6.39.3
Impacts on services, entities and interfaces
p. 201
6.40
Solution #40: User Data Congestion Analytics for NWDAF-assisted RFSP policy
p. 201
6.40.1
Description
p. 201
6.40.2
Input Data
p. 202
6.40.3
Output Analytics
p. 202
6.40.4
Procedures
p. 202
6.40.5
Impacts on services, entities and interfaces
p. 202
6.41
Solution #41: RAT/Frequency usage analytics
p. 202
6.41.1
Description
p. 202
6.41.1.1
Information for the support of RFSP index selection
p. 202
6.41.2
Input Data
p. 202
6.41.3
Output Analytics
p. 203
6.41.4
Procedure
p. 204
6.41.5
Impacts on services, entities and interfaces
p. 204
6.42
Solution #42: NWDAF-assisted RFSP Policy Configuration
p. 205
6.42.1
Description
p. 205
6.42.2
Input Data and Output Analytics
p. 205
6.42.3
Procedures
p. 206
6.42.4
Impacts on services, entities and interfaces
p. 207
6.43
Solution #43: RFSP index value using Analytics Id Service Experience
p. 207
6.43.1
Description
p. 207
6.43.2
Input Data
p. 207
6.43.3
Output Analytics
p. 208
6.43.4
Procedures
p. 208
6.43.5
Impacts on services, entities and interfaces
p. 209
6.44
Solution #44: Analytics for Session Management Congestion Control Experience
p. 209
6.44.1
Description
p. 209
6.44.2
Input Data
p. 210
6.44.3
Output Analytics
p. 210
6.44.4
Procedures
p. 211
6.44.5
Impacts on services, entities and interfaces
p. 212
6.45
Solution #45: Triggers for requesting analytics
p. 212
6.45.1
Description
p. 212
6.45.2
Impacts on services, entities and interfaces
p. 214
6.46
Solution #46: NWDAF assisted new application detection
p. 214
6.46.1
Description
p. 214
6.46.2
Input Data
p. 215
6.46.3
Output Analytics
p. 215
6.46.4
Procedures
p. 216
6.46.5
Impacts on services, entities and interfaces
p. 216
6.47
Solution #47: UE Presence Pattern analytics to support edge computing
p. 217
6.47.1
Description
p. 217
6.47.1.1
Overview
p. 217
6.47.1.2
Alternative #1: a new "UE Presence Pattern" analytics
p. 217
6.47.1.3
Alternative #2: an extension of the existing UE Mobility analytics
p. 217
6.47.2
Input Data
p. 218
6.47.2.1
Alternative #1: a new "UE Presence Pattern" analytics
p. 218
6.47.2.2
Alternative #2: an extension of the existing UE Mobility analytics
p. 218
6.47.3
Output Analytics
p. 218
6.47.3.1
Alternative #1: a new "UE Presence Pattern" analytics
p. 218
6.47.3.2
Alternative #2: an extension of the existing UE Mobility analytics
p. 218
6.47.4
Procedures
p. 219
6.47.4.1
Alternative #1: UE Presence Pattern Analytics Procedure
p. 219
6.47.4.2
Alternative #2: an extension of the existing UE Mobility analytics
p. 220
6.47.5
Impacts on services, entities and interfaces
p. 220
6.47.5.1
Alternative #1: a new "UE Presence Pattern" analytics
p. 220
6.47.5.2
Alternative #2: an extension of the existing UE Mobility analytics
p. 220
6.48
Solution #48 (merging Sol# 49(alternative 1), 50): NWDAF assisted UP optimization for EC by defining a new DN performance analytics
p. 220
6.48.1
Description
p. 220
6.48.2
Input
p. 221
6.48.3
Output Analytics
p. 221
6.48.4
Procedures
p. 224
6.48.5
Impacts on services, entities and interfaces
p. 225
6.49
Solution #49: Selecting an Edge Application Server instance/DNAI path based on NWDAF analytics
p. 225
6.49.1
Description
p. 225
6.49.2
Alternative 1 - Performance Data Collection from AF
p. 227
6.49.2.1
Description of solution
p. 227
6.49.2.2
Input Data
p. 227
6.49.2.3
Output Analytics
p. 227
6.49.2.4
Procedures
p. 228
6.49.2.4.1
Collecting performance data from EDN networks
p. 228
6.49.2.4.2
NWDAF providing analytics indicating a best application server instance
p. 230
6.49.3
Alternative 2 - Leveraging observed service experience analytics
p. 233
6.49.3.1
Description of solution
p. 233
6.49.3.2
Input Data
p. 233
6.49.3.3
Output Analytics
p. 233
6.49.3.4
Procedures
p. 234
6.49.5
Impacts on services, entities and interfaces
p. 235
6.50
Solution #50: Network Assisted DNAI selection for Edge Computing
p. 235
6.50.1
Description
p. 235
6.50.2
Input Data
p. 236
6.50.3
Output Analytics
p. 237
6.50.4
Procedures
p. 237
6.50.5
Impacts on services, entities and interfaces
p. 238
6.51
Solution #51: optimization for edge computing
p. 238
6.51.1
Description
p. 238
6.51.1.1
General
p. 238
6.51.1.2
Procedure
p. 238
6.51.2
Impacts on services, entities and interfaces
p. 239
6.52
Solution #52: Accuracy levels and options
p. 239
6.52.1
Description
p. 239
6.52.1.1
General
p. 239
6.52.1.2
Procedures
p. 239
6.52.2
Impacts on services, entities and interfaces
p. 239
6.53
Solution #53: Support of Multiple NWDAF with Efficient Cooperation
p. 240
6.53.1
Functional description
p. 240
6.53.2
Procedures
p. 240
6.53.3
Impacts on services, entities and interfaces
p. 241
6.54
Solution #54 (merging Solution #55): Analytics Delay based solution for Real-Time communication with NWDAF
p. 241
6.54.1
Description
p. 241
6.54.1.1
General
p. 241
6.54.1.2
Procedure for NWDAF registration
p. 243
6.54.1.3
Procedure for NWDAF discovery
p. 243
6.54.1.4
Data pre-collection and pre-analytics
p. 244
6.54.2
Impacts on services, entities and interfaces
p. 245
6.55
Solution #55: Enhancement for Real-Time and Near-Real-Time Communication with NWDAF
p. 246
6.55.1
General
p. 246
6.55.2
Functional description
p. 246
6.55.3
Procedures
p. 246
6.55.4
Impacts on services, entities and interfaces
p. 247
6.56
Solution #56: Trained ML Model Sharing between NWDAF instances
p. 247
6.56.1
Description
p. 247
6.56.2
Procedure
p. 250
6.56.3
Impacts on services, entities and interfaces
p. 251
6.57
Solution #57: Reselection of NWDAF due to mobility change
p. 252
6.57.1
Description
p. 252
6.57.2
Procedures
p. 252
6.57.2.1
Re-selection of NWDAF without AMF change
p. 252
6.57.2.2
Re-selection of NWDAF with AMF change
p. 253
6.57.3
Impacts on Existing Nodes and Functionality
p. 254
6.58
Solution #58: Efficient Service for Data Collection in NWDAF-to-NWDAF Interactions
p. 254
6.58.1
Description
p. 254
6.58.1.1
General
p. 254
6.58.1.2
Models for the Data Collection Service
p. 255
6.58.1.2.1
Alternative 1: Applying Event Exposure Framework Principles
p. 255
6.58.1.2.2
Alternative 2: Extensions to NWDAF Services
p. 255
6.58.1.2.3
Alternative 3: New Dedicated Service
p. 256
6.58.1.3
Criteria for Alternative Selection and Co-existence
p. 257
6.58.2
Procedure
p. 258
6.58.3
Impacts on services, entities and interfaces
p. 261
6.59
Solution #59: Analytics handover
p. 261
6.59.1
Introduction
p. 261
6.59.2
Procedures
p. 262
6.59.2.1
Analytics handover procedure
p. 262
6.59.2.2
Prepared analytics handover procedure
p. 264
6.59.3
Impacts on services, entities and interfaces
p. 266
6.60
Solution #60: Distributed NWDAFs deployment and Aggregation Function
p. 267
6.60.1
Introduction
p. 267
6.60.2
Functional Description
p. 267
6.60.3
Procedures
p. 269
6.60.3.1
NWDAF registration procedure
p. 269
6.60.3.2
NWDAF discovery procedure
p. 270
6.60.3.3
Procedure for analytics exposure
p. 271
6.60.4
Impacts on services, entities and interfaces
p. 272
6.61
Solution#61: Improvement of User Data Congestion Analytics
p. 272
6.61.1
Descriptions
p. 272
6.61.2
Input data improvement
p. 272
6.61.3
Output analytics improvement
p. 273
6.61.4
Procedures improvement
p. 273
6.61.4a
User Data Congestion Mitigation
p. 274
6.61.5
Nnwdaf Services Description
p. 274
6.61.6
Impacts on services, Existing Nodes and Functionality
p. 274
6.61.7
Improvement of Observed Service Experience Analytics
p. 275
6.61.7.1
Analytics Filter Information improvement
p. 275
6.61.7.2
Input data improvement
p. 276
6.61.7.3
Procedures improvement
p. 276
6.61.7.4
Impacts on services, Existing Nodes and Functionality
p. 280
6.61.7.5
Nnwdaf Services Description
p. 281
6.62
Solution #62: Analytics for WLAN performance and WLANSP using UE Data
p. 282
6.62.1
Description
p. 282
6.62.2
Input Data
p. 283
6.62.3
Output Analytics
p. 283
6.62.4
Procedures
p. 285
6.62.4.1
UE Data Collection procedure
p. 285
6.62.4.2
Analytics for WLAN performance and WLANSP
p. 286
6.62.5
Impacts on services, entities and interfaces
p. 287
6.63
Solution #63: UE data as an input for service experience analytics
p. 287
6.63.1
Description
p. 287
6.63.2
Input Data
p. 288
6.63.3
Output Analytics
p. 288
6.63.4
Procedures
p. 289
6.63.5
Impacts on services, entities and interfaces
p. 289
6.64
Solution #64: MNO owned Data Collection AF for UE data collection
p. 289
6.64.1
Description
p. 289
6.64.1.1
General
p. 290
6.64.1.2
DC-AF collects UE data from ASP server
p. 290
6.64.1.3
Registration and Discovery of DC-AF
p. 291
6.64.1.4
DC-AF provides UE data to NWDAF consumer
p. 292
6.64.1.5
Security consideration
p. 293
6.64.2
Impacts on services, entities and interfaces
p. 293
6.65
Solution #65: Triggers for data collection from the UEs
p. 294
6.65.1
Introduction
p. 294
6.65.2
Functional Description
p. 294
6.65.3
Procedures
p. 294
6.65.4
Impacts on services, entities and interfaces
p. 296
6.66
Solution #66: Including Dispersion data in the Expected UE Behaviour
p. 296
6.66.1
Description
p. 296
6.66.1.1
Overview
p. 296
6.66.2
Impacts on Existing Nodes and Functionality
p. 297
6.67
Solution #67: User plane session inactivity timer optimization
p. 297
6.67.1
Description
p. 297
6.67.1.1
General
p. 298
6.67.1.2
Input data
p. 298
6.67.1.3
Output analytics
p. 299
6.67.1.4
Procedures
p. 299
6.67.2
Impacts on Existing Nodes and Functionality
p. 300
6.68
Solution #68: NWDAF assistance to support UP optimization
p. 301
6.68.1
Description
p. 301
6.68.2
Input Data
p. 301
6.68.3
Output Analytics
p. 302
6.68.4
Procedures
p. 303
6.68.4.1
Analytics Procedure
p. 303
6.68.5
Impacts on services, entities and interfaces
p. 304
6.69
Solution #69: NWDAF associated to the User-plane
p. 304
6.69.1
General
p. 304
6.69.1.1
Principles of the Solution
p. 304
6.69.1.2
Registration of the NWDAF serving an area
p. 305
6.69.1.3
Registration/Deregistration of the NWDAF serving a UE
p. 305
6.69.1.3a
NWDAFs subscribes to a new SMF instance
p. 306
6.69.1.4
Discovery the NWDAF via the UDM when UE is camping in NWDAF service area
p. 308
6.69.1.5
Providing the information of the NWDAF serving the UE to consumers
p. 310
6.69.2
Impacts on services, Existing Nodes and Functionality
p. 310
6.70
Solution #70: Persistent data collection
p. 310
6.70.1
Description
p. 310
6.70.1.1
Overview
p. 310
6.70.1.2
Procedure for the creation or deletion of a persistent Event Exposure subscription
p. 311
6.70.1.3
Procedure for restoring an existing Event Exposure Subscription
p. 312
6.70.2
Impacts on Existing Nodes and Functionality
p. 312
6.71
Solution #71: Representative UEs sampling for data collection
p. 313
6.71.1
Introduction
p. 313
6.71.2
Functional Description
p. 313
6.71.3
Procedures
p. 313
6.71.4
Impacts on services, entities and interfaces
p. 315
6.72
Solution #72: Efficient Analytics Transfer in mixed Deployments
p. 315
6.72.1
Description
p. 315
6.72.2
Procedures
p. 315
6.72.3
Impacts on services, entities and interfaces
p. 316
6.73
Solution #73: Trigger configuration for data collection and analytics
p. 316
6.73.1
Description
p. 316
6.73.2
Input Data
p. 321
6.73.3
Output Analytics
p. 321
6.73.4
Procedures
p. 321
6.73.4.1
Provisioning of network analytics control information
p. 321
6.73.4.2
Provisioning of service specific analytics control information
p. 322
6.73.5
Impacts on services, entities and interfaces
p. 323
6.74
Solution #74: Triggers for requesting analytics
p. 323
6.74.1
Description
p. 323
6.74.2
Input Data
p. 323
6.74.3
Output Analytics
p. 324
6.74.4
Procedures
p. 324
6.74.5
Impacts on services, entities and interfaces
p. 324
6.75
Solution #75: AF influencing NFs triggers for interactions with NWDAF
p. 324
6.75.1
Description
p. 324
6.75.2
Procedure
p. 326
6.75.3
Impacts on services, entities and interfaces
p. 327
6.76
Solution #76: Revocation of user consent
p. 328
6.76.1
Introduction
p. 328
6.76.2
Procedures
p. 328
6.76.2.1
Alternative 1: Data Request procedure with URDCF hosted by NWDAF
p. 328
6.76.2.2
Alternative 2: Data Request procedure with URDCF hosted by DCCF
p. 330
6.76.2.3
User consent revocation procedure
p. 330
6.76.3
Impacts on services, entities and interfaces
p. 331
6.77
Solution #77: NWDAF assisted Per Access Network Performance
p. 332
6.77.1
Description
p. 332
6.77.1.1
Overview
p. 332
6.77.1.2
Alternative#1: a new "Per Access Network Performance" analytics
p. 332
6.77.1.3
Alternative#2: an extension of the existing Observed Service Experience analytics
p. 332
6.77.2
Input Data
p. 333
6.77.2.1
Alternative#1: a new "Per Access Network Performance" analytics
p. 333
6.77.2.2
Alternative#2: an extension of the existing Observed Service Experience analytics
p. 333
6.77.3
Output Analytics
p. 333
6.77.3.1
Alternative#1: a new "Per Access Network Performance" analytics
p. 333
6.77.3.2
Alternative#2: an extension of the existing Observed Service Experience analytics
p. 334
6.77.4
Procedures
p. 334
6.77.4.1
Alternative#1: a new "Per Access Network Performance" analytics
p. 334
6.77.4.2
Alternative#2: an extension of the existing Observed Service Experience analytics
p. 335
6.77.5
Impacts on services, entities and interfaces
p. 336
6.77.5.1
Alternative#1: a new "Per Access Network Performance" analytics
p. 336
6.77.5.2
Alternative#2: an extension of the existing Observed Service Experience analytics
p. 336