Tech-invite3GPPspaceIETFspace
21222324252627282931323334353637384‑5x

Content for  TR 23.700-84  Word version:  19.0.0

Top   Top   Up   Prev   None
1…   5…

 

5  Use Cases, Motivations and Key Issuesp. 12

6  Solutionsp. 17

6.0  Mapping of Solutions to Key Issuesp. 17

6.1  Solution #1: Direct AI/ML based Positioning for case 2b/3bp. 17

6.2  Solution #2: Support for AI/ML Direct Positioning Training, Inference and Data Collection with LMF-side modelsp. 23

6.3  Solution #3: Training of the AI/ML positioning modelp. 26

6.4  Solution 4: Data Collection Framework for Direct AI/ML positioningp. 27

6.5  Solution #5: LMF selection to support the LMF-sided direct AI/ML positioningp. 30

6.6  Solution #6: LMF based ML model training and Inferencep. 31

6.7  Solution #7 Training of LMF-side Model to determine locationp. 32

6.8  Solution #8: MTLF-based model performance monitoring for AI/ML positioningp. 42

6.9  Solution #9: new solution for KI#1 support monitoring the performance of AI modelp. 43

6.10  Solution #10: Direct AI/ML based positioning with NWDAF assistancep. 46

6.11  Solution #11: Data collection procedure for LMF-side model trainingp. 51

6.12  Solution #12: new solution for KI#1 support the data collection for AI model training based on authorizationp. 52

6.13  Solution #13: Sample/Feature alignment and general training procedure for the VFLp. 54

6.14  Solution #14: General procedure for NWDAF initiated Vertical Federated Learning between NWDAF(s) and AF(s)p. 61

6.15  Solution 15: Support for vertical federated learning: Model Training and Inferencep. 66

6.16  Solution #16: Support for VFL with NWDAF and AF as Participantsp. 71

6.17  Solution #17: NF discovery and selection for VFLp. 75

6.18  Solution #18: Vertical Federated Learning between NWDAF and AFp. 78

6.19  Solution #19: VFL inference procedure between NWDAF and AFp. 91

6.20  Solution #20: Inference procedure for the Vertical Federated Learning between NWDAF(s) and AF(s)p. 93

6.21  Solution #21: Vertical Federated Learning for support of Application Layer QoEp. 96

6.22  Solution #22: Vertical Federated learning considering internal NWDAF architecturep. 103

6.23  Solution #23: Cross domain VFL involving NWDAF and AFp. 110

6.24  Solution #24: How to support Vertical Federated Learning between NWDAF and AFp. 121

6.25  Solution #25: NF Registration and Discovery Enhancement for VFLp. 125

6.26  Solution #26: NWDAF-assisted policy control with Recommendation logical functionp. 128

6.27  Solution #27: NWDAF assisted QoS policy generationp. 132

6.28  Solution #28: QoS Flow Analyticsp. 134

6.29  Solution #29: How to evaluate NWDAF-assisted policy control and QoS enhancementp. 139

6.30  Solution #30: NWDAF-assisted PDU Set assistance informationp. 142

6.31  Solution #31: PCF as RL Agent and NWDAF as Interpreterp. 143

6.32  Solution #32: NWDAF-assisted optimized QoS policies determinationp. 147

6.33  Solution #33: QoS/policy enhancements assisted by NWDAFp. 150

6.34  Solution #34: BDT Policy Recommendationsp. 155

6.35  Solution #35: NWDAF-assisted Network Abnormal Behaviour Mitigation and Preventionp. 158

6.36  Solution #36: Registration Signalling Analytics to support detection and prevention of signalling stormp. 164

6.37  Solution #37: Signalling storm detection and mitigation based on O&M datap. 168

6.38  Solution #38: NWDAF-assisted signalling storm analytics, predictions, prevention and mitigationp. 170

6.39  Solution #39: NWDAF Analytics based Signalling Strom Predictionp. 177

7  Overall Evaluationp. 185

8  Conclusionsp. 185

$  Change historyp. 191


Up   Top