Tech-invite3GPPspaceIETFspace
21222324252627282931323334353637384‑5x

Content for  TR 23.700-81  Word version:  18.0.0

Top   Top   Up   Prev   None
1…   5…

 

5  Key Issuesp. 15

6  Solutionsp. 21

6.0  Mapping Solutions to Key Issuesp. 21

6.1  Solution #1: Improving Correctness using multiple ML models for an analytics reportp. 23

6.2  Solution #2: Improving the Correctness of Service Experience Predictions with Contribution Weightsp. 26

6.3  Solution #3: Accuracy based NWDAF Analytics Correctness Improvementp. 27

6.4  Solution #4: Determining ML model drift for improving analytics accuracyp. 32

6.5  Solution #5: Enhancements on ML model provision to improve correctness of NWDAF analyticsp. 35

6.6  Solution #6: Correctness improvement of NWDAF by determining ML model performancep. 40

6.7  Solution #7: Enhancements to NWDAF analytics servicesp. 42

6.8  Solution #8: NWDAF assisted service type detectionp. 45

6.9  Solution #9: NWDAF-assisted application detectionp. 49

6.10  Solution #10: Support for Data and Analytics Exchange in Roaming Casep. 53

6.11  Solution #11: PDU session management in roaming scenarios using network analyticsp. 56

6.12  Solution #12: DCCF and MFAF Relocationp. 58

6.13  Solution #13: NWDAF MTLF and NWDAF AnLF interoperability support for registration and discovery in 5GCp. 61

6.14  Solution #14: Enhance trained ML Model sharing via ML Model formatp. 62

6.15  Solution #15: ML model sharing with different AnLF providersp. 64

6.16  Solution #16: NWDAF assisted URSP determinationp. 66

6.17  Solution #17: NSSP in roaming scenarios using network analyticsp. 71

6.18  Solution #18: Integrity KPI for QoS Sustainability Analyticsp. 72

6.19  Solution #19: Enhanced QoS Sustainability Analytics in the finer granularity areap. 76

6.20  Solution #20: GTP metrics for QoS Sustainability analyticsp. 80

6.21  Solution #21: Federated Learning procedure between different NWDAFsp. 81

6.22  Solution #22: Federated learning group creationp. 85

6.23  Solution #23: Support of federated learning for model trainingp. 87

6.24  Solution #24: Horizontal Federated Learning among Multiple NWDAFsp. 92

6.25  Solution #25: Outdoors Advertisement use case with finer granularity location informationp. 98

6.26  Solution #26: Finer granularity of location information based on cell sequencep. 100

6.27  Solution #27: Relative Proximity Analyticsp. 102

6.28  Solution #28: Detect and Improve correctness of NWDAF analyticsp. 106

6.29  Solution #29: Detection of ML Model degradation and actionsp. 110

6.30  Solution #30: Improve correctness of NWDAF analyticsp. 115

6.31  Solution #31: Multiple Analytics outputs based NF action decisionp. 118

6.32  Solution #32: Enhanced ML model provisioningp. 119

6.33  Solution #33: Improving correctness of NWDAF analytics by providing correction informationp. 122

6.34  Solution #34: Enhancing the accuracy of NWDAF Analyticsp. 125

6.35  Solution #35: Improve model training and provisioning exploiting sub-areas with similar statistical propertiesp. 129

6.36  Solution #36: Enhanced provisioning of ML model based on information about how inference will be executedp. 134

6.37  Solution #37: Analytics Exchange in Home routed roaming casep. 137

6.38  Solution #38: Interactions between VPLMN and HPLMN for restricted data collection and analytics retrievalp. 140

6.39  Solution #39: Architecture enhancements to support Data and analytics exchange in roaming casep. 144

6.40  Solution #40: Data and analytics exchange for roaming UEsp. 149

6.41  Solution #41: Sending data that is about to be purgedp. 152

6.42  Solution #42: Storage and retrieval of trained ML models to/from ADRFp. 153

6.43  Solution #43: ML model storage in ADRF and ML model provision from ADRFp. 156

6.44  Solution #44: DCCF Reselection when multiple instances of DCCF exist in a networkp. 158

6.45  Solution #45: Managing Impact of Muting on NF Producerp. 160

6.46  Solution #46: ADRF / NWDAF Data Storage Managementp. 162

6.47  Solution #47: Sharing models between NWDAFsp. 165

6.48  Solution #48: PCF/UE re-evaluates the URSP rules according to NWDAF's analyticsp. 167

6.49  Solution #49: NWDAF assisted URSP decision for redundant transmissionp. 175

6.50  Solution #50: Enhancements on QoS Sustainability analyticsp. 179

6.51  Solution #51: Selection, Monitoring, and Maintenance of NWDAF(s) for Federated Learning in 5GCp. 182

6.52  Solution #52: FL training update to NWDAF containing AnLF from NWDAF containing MTLFp. 186

6.53  Solution #53: Horizontal Federated Learning with Multiple NWDAFp. 188

6.54  Solution #54: Finer granular location information based on LCS input datap. 192

6.55  Solution #55: location information with finer granularity in horizontal and vertical directionsp. 193

6.56  Solution #56: PSAP resolution with finer granularity of location informationp. 196

6.57  Solution #57: NWDAF determines granularity when the consumer requests finer granularity location informationp. 197

6.58  Solution #58: Supporting UE mobility analytics with finer granularity than TA/cellp. 200

6.59  Solution #59: Enhancement of NWDAF with location accuracy predictionp. 203

6.60  Solution #60: Interactions with MDAFp. 206

6.61  Solution #61: Improving correctness by retrieval ML model from ADRFp. 207

6.62  Solution #62: Improving the correctness of analytics based on the provision of context informationp. 210

6.63  Solution #63: Improving the correctness of NWDAF by rating the quality of the data sourcesp. 211

6.64  Solution #64: Optimize the collection and reporting of network datap. 213

6.65  Solution #65: Optimizing data collection and storage by NWDAF registration in UDM for all Analytics IDsp. 216

6.66  Solution #66: DCCF relocation initiated by source DCCF or central DCCFp. 217

6.67  Solution #67: Managing analytics input data from ADRFp. 219

6.68  Solution #68: Using data synthesis and compression for data storage and transferp. 221

6.69  Solution #69: Model performance guarantee during Federated Learningp. 223

6.70  Solution #70: Improved control of location granularityp. 226

6.71  Solution #71: Traffic flow statistics use case with finer granularity location informationp. 227

6.72  Solution #72: Use of MDAS analytics for improving AnLF/MTLF analytics accuracy and data collectionp. 229

6.73  Solution #73: How NWDAF requests analytics from MDA Management Functionp. 235

6.74  Solution #74: Supporting NWDAF interactions with MDAFp. 237

7  Overall Evaluationp. 241

8  Conclusionsp. 268

$  Change historyp. 278


Up   Top