Tech-invite3GPPspaceIETFspace
959493929190898887868584838281807978777675747372717069686766656463626160595857565554535251504948474645444342414039383736353433323130292827262524232221201918171615141312111009080706050403020100
in Index   Prev   Next

RFC 1850

OSPF Version 2 Management Information Base

Pages: 80
Obsoletes:  1253
Obsoleted by:  4750
Part 3 of 3 – Pages 44 to 80
First   Prev   None

ToP   noToC   RFC1850 - Page 44   prevText
    ospfVirtIfRetransInterval OBJECT-TYPE
        SYNTAX   UpToMaxAge
        MAX-ACCESS   read-create
        STATUS   current
        DESCRIPTION
           "The number of seconds between  link-state  ad-
           vertisement  retransmissions,  for  adjacencies
           belonging to this  interface.   This  value  is
           also used when retransmitting database descrip-
           tion  and  link-state  request  packets.   This
           value  should  be well over the expected round-
           trip time."
       DEFVAL { 5 }
       ::= { ospfVirtIfEntry 4 }


    ospfVirtIfHelloInterval OBJECT-TYPE
        SYNTAX   HelloRange
        MAX-ACCESS   read-create
        STATUS   current
        DESCRIPTION
           "The length of time, in  seconds,  between  the
           Hello  packets that the router sends on the in-
           terface.  This value must be the same  for  the
           virtual neighbor."
       DEFVAL { 10 }
       ::= { ospfVirtIfEntry 5 }


    ospfVirtIfRtrDeadInterval OBJECT-TYPE
        SYNTAX   PositiveInteger
        MAX-ACCESS   read-create
        STATUS   current
        DESCRIPTION
           "The number of seconds that  a  router's  Hello
           packets  have  not been seen before it's neigh-
           bors declare the router down.  This  should  be
           some  multiple  of  the  Hello  interval.  This
           value must be the same for the  virtual  neigh-
           bor."
       DEFVAL { 60 }
       ::= { ospfVirtIfEntry 6 }


    ospfVirtIfState OBJECT-TYPE
        SYNTAX   INTEGER    {
                    down (1),            -- these use the same encoding
                    pointToPoint (4)     -- as the ospfIfTable
ToP   noToC   RFC1850 - Page 45
                  }
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "OSPF virtual interface states."
       DEFVAL   { down }
       ::= { ospfVirtIfEntry 7 }


    ospfVirtIfEvents OBJECT-TYPE
        SYNTAX   Counter32
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The number of state changes or error events on
           this Virtual Link"
       ::= { ospfVirtIfEntry 8 }


    ospfVirtIfAuthKey OBJECT-TYPE
        SYNTAX   OCTET STRING (SIZE(0..256))
        MAX-ACCESS   read-create
        STATUS   current
        DESCRIPTION
           "If Authentication Type is simplePassword,  the
           device  will left adjust and zero fill to 8 oc-
           tets.

           Note that unauthenticated  interfaces  need  no
           authentication key, and simple password authen-
           tication cannot use a key of more  than  8  oc-
           tets.  Larger keys are useful only with authen-
           tication mechanisms not specified in this docu-
           ment.

           When  read,  ospfVifAuthKey  always  returns  a
           string of length zero."
       REFERENCE
          "OSPF Version 2, Section 9  The  Interface  Data
          Structure"
      DEFVAL   { '0000000000000000'H }    -- 0.0.0.0.0.0.0.0
      ::= { ospfVirtIfEntry 9 }


    ospfVirtIfStatus OBJECT-TYPE
        SYNTAX   RowStatus
        MAX-ACCESS   read-create
        STATUS   current
ToP   noToC   RFC1850 - Page 46
        DESCRIPTION
           "This variable displays the status of  the  en-
           try.  Setting it to 'invalid' has the effect of
           rendering it inoperative.  The internal  effect
           (row removal) is implementation dependent."
       ::= { ospfVirtIfEntry 10 }


    ospfVirtIfAuthType OBJECT-TYPE
        SYNTAX   INTEGER (0..255)
                    -- none (0),
                    -- simplePassword (1)
                    -- md5 (2)
                    -- reserved for specification by IANA (> 2)
        MAX-ACCESS   read-create
        STATUS   current
        DESCRIPTION
           "The authentication type specified for a virtu-
           al  interface.  Additional authentication types
           may be assigned locally."
       REFERENCE
          "OSPF Version 2, Appendix E Authentication"
      DEFVAL { 0 }        -- no authentication, by default
      ::= { ospfVirtIfEntry 11 }


--  OSPF Neighbor Table

--      The OSPF Neighbor Table describes all neighbors in
--      the locality of the subject router.

    ospfNbrTable OBJECT-TYPE
        SYNTAX   SEQUENCE OF OspfNbrEntry
        MAX-ACCESS   not-accessible
        STATUS   current
        DESCRIPTION
           "A table of non-virtual neighbor information."
       REFERENCE
          "OSPF Version 2, Section 10  The  Neighbor  Data
          Structure"
      ::= { ospf 10 }


    ospfNbrEntry OBJECT-TYPE
        SYNTAX   OspfNbrEntry
        MAX-ACCESS   not-accessible
        STATUS   current
        DESCRIPTION
ToP   noToC   RFC1850 - Page 47
           "The information regarding a single neighbor."
       REFERENCE
          "OSPF Version 2, Section 10  The  Neighbor  Data
          Structure"
      INDEX { ospfNbrIpAddr, ospfNbrAddressLessIndex }
      ::= { ospfNbrTable 1 }

OspfNbrEntry ::=
    SEQUENCE {
        ospfNbrIpAddr
            IpAddress,
        ospfNbrAddressLessIndex
            InterfaceIndex,
        ospfNbrRtrId
            RouterID,
        ospfNbrOptions
            Integer32,
        ospfNbrPriority
            DesignatedRouterPriority,
        ospfNbrState
            INTEGER,
        ospfNbrEvents
            Counter32,
        ospfNbrLsRetransQLen
            Gauge32,
        ospfNbmaNbrStatus
            RowStatus,
        ospfNbmaNbrPermanence
            INTEGER,
        ospfNbrHelloSuppressed
            TruthValue
              }

    ospfNbrIpAddr OBJECT-TYPE
        SYNTAX   IpAddress
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The IP address this neighbor is using  in  its
           IP  Source  Address.  Note that, on addressless
           links, this will not be 0.0.0.0,  but  the  ad-
           dress of another of the neighbor's interfaces."
       ::= { ospfNbrEntry 1 }


    ospfNbrAddressLessIndex OBJECT-TYPE
        SYNTAX   InterfaceIndex
        MAX-ACCESS   read-only
ToP   noToC   RFC1850 - Page 48
        STATUS   current
        DESCRIPTION
           "On an interface having an  IP  Address,  zero.
           On  addressless  interfaces,  the corresponding
           value of ifIndex in the Internet Standard  MIB.
           On  row  creation, this can be derived from the
           instance."
       ::= { ospfNbrEntry 2 }


    ospfNbrRtrId OBJECT-TYPE
        SYNTAX   RouterID
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "A 32-bit integer (represented as a type  IpAd-
           dress)  uniquely  identifying  the  neighboring
           router in the Autonomous System."
       DEFVAL   { '00000000'H }    -- 0.0.0.0
       ::= { ospfNbrEntry 3 }


    ospfNbrOptions OBJECT-TYPE
        SYNTAX   Integer32
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "A Bit Mask corresponding to the neighbor's op-
           tions field.

           Bit 0, if set, indicates that the  system  will
           operate  on  Type of Service metrics other than
           TOS 0.  If zero, the neighbor will  ignore  all
           metrics except the TOS 0 metric.

           Bit 1, if set, indicates  that  the  associated
           area  accepts and operates on external informa-
           tion; if zero, it is a stub area.

           Bit 2, if set, indicates that the system is ca-
           pable  of routing IP Multicast datagrams; i.e.,
           that it implements the Multicast Extensions  to
           OSPF.

           Bit 3, if set, indicates  that  the  associated
           area  is  an  NSSA.  These areas are capable of
           carrying type 7 external advertisements,  which
           are  translated into type 5 external advertise-
ToP   noToC   RFC1850 - Page 49
           ments at NSSA borders."
       REFERENCE
          "OSPF Version 2, Section 12.1.2 Options"
      DEFVAL { 0 }
      ::= { ospfNbrEntry 4 }


    ospfNbrPriority OBJECT-TYPE
        SYNTAX   DesignatedRouterPriority
        MAX-ACCESS   read-create
        STATUS   current
        DESCRIPTION
           "The priority of this neighbor in the designat-
           ed router election algorithm.  The value 0 sig-
           nifies that the neighbor is not eligible to be-
           come  the  designated router on this particular
           network."
       DEFVAL { 1 }
       ::= { ospfNbrEntry 5 }


    ospfNbrState OBJECT-TYPE
        SYNTAX   INTEGER    {
                    down (1),
                    attempt (2),
                    init (3),
                    twoWay (4),
                    exchangeStart (5),
                    exchange (6),
                    loading (7),
                    full (8)
                  }
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The State of the relationship with this Neigh-
           bor."
       REFERENCE
          "OSPF Version 2, Section 10.1 Neighbor States"
      DEFVAL   { down }
      ::= { ospfNbrEntry 6 }


    ospfNbrEvents OBJECT-TYPE
        SYNTAX   Counter32
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
ToP   noToC   RFC1850 - Page 50
           "The number of times this neighbor relationship
           has changed state, or an error has occurred."
       ::= { ospfNbrEntry 7 }


    ospfNbrLsRetransQLen OBJECT-TYPE
        SYNTAX   Gauge32
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The  current  length  of  the   retransmission
           queue."
       ::= { ospfNbrEntry 8 }


    ospfNbmaNbrStatus OBJECT-TYPE
        SYNTAX   RowStatus
        MAX-ACCESS   read-create
        STATUS   current
        DESCRIPTION
           "This variable displays the status of  the  en-
           try.  Setting it to 'invalid' has the effect of
           rendering it inoperative.  The internal  effect
           (row removal) is implementation dependent."
       ::= { ospfNbrEntry 9 }


    ospfNbmaNbrPermanence OBJECT-TYPE
        SYNTAX   INTEGER    {
                    dynamic (1),        -- learned through protocol
                    permanent (2)       -- configured address
                  }
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "This variable displays the status of  the  en-
           try.   'dynamic'  and  'permanent' refer to how
           the neighbor became known."
       DEFVAL { permanent }
       ::= { ospfNbrEntry 10 }


    ospfNbrHelloSuppressed OBJECT-TYPE
        SYNTAX   TruthValue
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "Indicates whether Hellos are being  suppressed
ToP   noToC   RFC1850 - Page 51
           to the neighbor"
       ::= { ospfNbrEntry 11 }


--  OSPF Virtual Neighbor Table

--      This table describes all virtual neighbors.
--      Since Virtual Links are configured in the
--      virtual interface table, this table is read-only.

    ospfVirtNbrTable OBJECT-TYPE
        SYNTAX   SEQUENCE OF OspfVirtNbrEntry
        MAX-ACCESS   not-accessible
        STATUS   current
        DESCRIPTION
           "A table of virtual neighbor information."
       REFERENCE
          "OSPF Version 2, Section 15  Virtual Links"
      ::= { ospf 11 }


    ospfVirtNbrEntry OBJECT-TYPE
        SYNTAX   OspfVirtNbrEntry
        MAX-ACCESS   not-accessible
        STATUS   current
        DESCRIPTION
           "Virtual neighbor information."
       INDEX { ospfVirtNbrArea, ospfVirtNbrRtrId }
       ::= { ospfVirtNbrTable 1 }

OspfVirtNbrEntry ::=
    SEQUENCE {
        ospfVirtNbrArea
            AreaID,
        ospfVirtNbrRtrId
            RouterID,
        ospfVirtNbrIpAddr
            IpAddress,
        ospfVirtNbrOptions
            Integer32,
        ospfVirtNbrState
            INTEGER,
        ospfVirtNbrEvents
            Counter32,
        ospfVirtNbrLsRetransQLen
            Gauge32,
        ospfVirtNbrHelloSuppressed
                TruthValue
ToP   noToC   RFC1850 - Page 52
              }

    ospfVirtNbrArea OBJECT-TYPE
        SYNTAX   AreaID
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The Transit Area Identifier."
       ::= { ospfVirtNbrEntry 1 }


    ospfVirtNbrRtrId OBJECT-TYPE
        SYNTAX   RouterID
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "A  32-bit  integer  uniquely  identifying  the
           neighboring router in the Autonomous System."
       ::= { ospfVirtNbrEntry 2 }


    ospfVirtNbrIpAddr OBJECT-TYPE
        SYNTAX   IpAddress
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The IP address this Virtual  Neighbor  is  us-
           ing."
       ::= { ospfVirtNbrEntry 3 }


    ospfVirtNbrOptions OBJECT-TYPE
        SYNTAX   Integer32
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "A Bit Mask corresponding to the neighbor's op-
           tions field.

           Bit 1, if set, indicates that the  system  will
           operate  on  Type of Service metrics other than
           TOS 0.  If zero, the neighbor will  ignore  all
           metrics except the TOS 0 metric.

           Bit 2, if set, indicates  that  the  system  is
           Network  Multicast  capable; ie, that it imple-
           ments OSPF Multicast Routing."
       ::= { ospfVirtNbrEntry 4 }
ToP   noToC   RFC1850 - Page 53
    ospfVirtNbrState OBJECT-TYPE
        SYNTAX   INTEGER    {
                    down (1),
                    attempt (2),
                    init (3),
                    twoWay (4),
                    exchangeStart (5),
                    exchange (6),
                    loading (7),
                    full (8)
                  }
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The state of the  Virtual  Neighbor  Relation-
           ship."
       ::= { ospfVirtNbrEntry 5 }


    ospfVirtNbrEvents OBJECT-TYPE
        SYNTAX   Counter32
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The number of  times  this  virtual  link  has
           changed its state, or an error has occurred."
       ::= { ospfVirtNbrEntry 6 }


    ospfVirtNbrLsRetransQLen OBJECT-TYPE
        SYNTAX   Gauge32
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The  current  length  of  the   retransmission
           queue."
       ::= { ospfVirtNbrEntry 7 }


    ospfVirtNbrHelloSuppressed OBJECT-TYPE
        SYNTAX   TruthValue
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "Indicates whether Hellos are being  suppressed
           to the neighbor"
       ::= { ospfVirtNbrEntry 8 }
ToP   noToC   RFC1850 - Page 54
--  OSPF Link State Database, External

--      The Link State Database contains the Link State
--      Advertisements from throughout the areas that the
--      device is attached to.

--             This table is identical to the OSPF LSDB Table in
--      format, but contains only External Link State
--             Advertisements.  The purpose is to allow external
--      LSAs to be displayed once for the router rather
--      than once in each non-stub area.

    ospfExtLsdbTable OBJECT-TYPE
        SYNTAX   SEQUENCE OF OspfExtLsdbEntry
        MAX-ACCESS   not-accessible
        STATUS   current
        DESCRIPTION
           "The OSPF Process's Links State Database."
       REFERENCE
          "OSPF Version 2, Section 12  Link  State  Adver-
          tisements"
      ::= { ospf 12 }


    ospfExtLsdbEntry OBJECT-TYPE
        SYNTAX   OspfExtLsdbEntry
        MAX-ACCESS   not-accessible
        STATUS   current
        DESCRIPTION
           "A single Link State Advertisement."
       INDEX { ospfExtLsdbType, ospfExtLsdbLsid, ospfExtLsdbRouterId }
       ::= { ospfExtLsdbTable 1 }

OspfExtLsdbEntry ::=
    SEQUENCE {
        ospfExtLsdbType
            INTEGER,
        ospfExtLsdbLsid
            IpAddress,
        ospfExtLsdbRouterId
            RouterID,
        ospfExtLsdbSequence
            Integer32,
        ospfExtLsdbAge
            Integer32,
        ospfExtLsdbChecksum
            Integer32,
        ospfExtLsdbAdvertisement
ToP   noToC   RFC1850 - Page 55
            OCTET STRING
              }

    ospfExtLsdbType OBJECT-TYPE
        SYNTAX   INTEGER    {
                    asExternalLink (5)
                  }
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The type  of  the  link  state  advertisement.
           Each  link state type has a separate advertise-
           ment format."
       REFERENCE
          "OSPF Version 2, Appendix A.4.1 The  Link  State
          Advertisement header"
      ::= { ospfExtLsdbEntry 1 }


    ospfExtLsdbLsid OBJECT-TYPE
        SYNTAX   IpAddress
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The Link State ID is an LS Type Specific field
           containing either a Router ID or an IP Address;
           it identifies the piece of the  routing  domain
           that is being described by the advertisement."
       REFERENCE
          "OSPF Version 2, Section 12.1.4 Link State ID"
      ::= { ospfExtLsdbEntry 2 }


    ospfExtLsdbRouterId OBJECT-TYPE
        SYNTAX   RouterID
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The 32 bit number that uniquely identifies the
           originating router in the Autonomous System."
       REFERENCE
          "OSPF Version 2, Appendix C.1 Global parameters"
      ::= { ospfExtLsdbEntry 3 }

--  Note that the OSPF Sequence Number is a 32 bit signed
--  integer.  It starts with the value '80000001'h,
--  or -'7FFFFFFF'h, and increments until '7FFFFFFF'h
--  Thus, a typical sequence number will be very negative.
ToP   noToC   RFC1850 - Page 56
    ospfExtLsdbSequence OBJECT-TYPE
        SYNTAX   Integer32
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The sequence number field is a  signed  32-bit
           integer.   It  is used to detect old and dupli-
           cate link state advertisements.  The  space  of
           sequence  numbers  is  linearly  ordered.   The
           larger the sequence number the more recent  the
           advertisement."
       REFERENCE
          "OSPF Version  2,  Section  12.1.6  LS  sequence
          number"
      ::= { ospfExtLsdbEntry 4 }


    ospfExtLsdbAge OBJECT-TYPE
        SYNTAX   Integer32    -- Should be 0..MaxAge
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "This field is the age of the link state adver-
           tisement in seconds."
       REFERENCE
          "OSPF Version 2, Section 12.1.1 LS age"
      ::= { ospfExtLsdbEntry 5 }


    ospfExtLsdbChecksum OBJECT-TYPE
        SYNTAX   Integer32
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "This field is the  checksum  of  the  complete
           contents  of  the  advertisement, excepting the
           age field.  The age field is excepted  so  that
           an   advertisement's  age  can  be  incremented
           without updating the  checksum.   The  checksum
           used  is  the same that is used for ISO connec-
           tionless datagrams; it is commonly referred  to
           as the Fletcher checksum."
       REFERENCE
          "OSPF Version 2, Section 12.1.7 LS checksum"
      ::= { ospfExtLsdbEntry 6 }


    ospfExtLsdbAdvertisement OBJECT-TYPE
ToP   noToC   RFC1850 - Page 57
        SYNTAX   OCTET STRING (SIZE(36))
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The entire Link State Advertisement, including
           its header."
       REFERENCE
          "OSPF Version 2, Section 12  Link  State  Adver-
          tisements"
      ::= { ospfExtLsdbEntry 7 }


--  OSPF Use of the CIDR Route Table

ospfRouteGroup           OBJECT IDENTIFIER ::= { ospf 13 }

-- The IP Forwarding Table defines a number of objects for use by
-- the routing protocol to externalize its information.  Most of
-- the variables (ipForwardDest, ipForwardMask, ipForwardPolicy,
-- ipForwardNextHop, ipForwardIfIndex, ipForwardType,
-- ipForwardProto, ipForwardAge, and ipForwardNextHopAS) are
-- defined there.

-- Those that leave some discretion are defined here.

-- ipCidrRouteProto is, of course, ospf (13).

-- ipCidrRouteAge is the time since the route was first calculated,
-- as opposed to the time since the last SPF run.

-- ipCidrRouteInfo is an OBJECT IDENTIFIER for use by the routing
-- protocol.  The following values shall be found there depending
-- on the way the route was calculated.

ospfIntraArea      OBJECT IDENTIFIER ::= { ospfRouteGroup 1 }
ospfInterArea      OBJECT IDENTIFIER ::= { ospfRouteGroup 2 }
ospfExternalType1  OBJECT IDENTIFIER ::= { ospfRouteGroup 3 }
ospfExternalType2  OBJECT IDENTIFIER ::= { ospfRouteGroup 4 }

-- ipCidrRouteMetric1 is, by definition, the primary routing
-- metric.  Therefore, it should be the metric that route
-- selection is based on.  For intra-area and inter-area routes,
-- it is an OSPF metric.  For External Type 1 (comparable value)
-- routes, it is an OSPF metric plus the External Metric.  For
-- external Type 2 (non-comparable value) routes, it is the
-- external metric.

-- ipCidrRouteMetric2 is, by definition, a secondary routing
ToP   noToC   RFC1850 - Page 58
-- metric.  Therefore, it should be the metric that breaks a tie
-- among routes having equal metric1 values and the same
-- calculation rule.  For intra-area, inter-area routes, and
-- External Type 1 (comparable value) routes, it is unused.  For
-- external Type 2 (non-comparable value) routes, it is the metric
-- to the AS border router.

-- ipCidrRouteMetric3, ipCidrRouteMetric4, and ipCidrRouteMetric5 are
-- unused.

--
--      The OSPF Area Aggregate Table
--
--      This table replaces the OSPF Area Summary Table, being an
--      extension of that for CIDR routers.

    ospfAreaAggregateTable OBJECT-TYPE
        SYNTAX   SEQUENCE OF OspfAreaAggregateEntry
        MAX-ACCESS   not-accessible
        STATUS   current
        DESCRIPTION
           "A range of IP addresses  specified  by  an  IP
           address/IP  network  mask  pair.   For example,
           class B address range of X.X.X.X with a network
           mask  of  255.255.0.0 includes all IP addresses
           from X.X.0.0  to  X.X.255.255.   Note  that  if
           ranges  are configured such that one range sub-
           sumes  another  range  (e.g.,   10.0.0.0   mask
           255.0.0.0  and  10.1.0.0 mask 255.255.0.0), the
           most specific match is the preferred one."
       REFERENCE
          "OSPF Version 2, Appendix C.2  Area parameters"
      ::= { ospf 14 }


    ospfAreaAggregateEntry OBJECT-TYPE
        SYNTAX   OspfAreaAggregateEntry
        MAX-ACCESS   not-accessible
        STATUS   current
        DESCRIPTION
           "A range of IP addresses  specified  by  an  IP
           address/IP  network  mask  pair.   For example,
           class B address range of X.X.X.X with a network
           mask  of  255.255.0.0 includes all IP addresses
           from X.X.0.0  to  X.X.255.255.   Note  that  if
           ranges are range configured such that one range
           subsumes another  range  (e.g.,  10.0.0.0  mask
           255.0.0.0  and  10.1.0.0 mask 255.255.0.0), the
ToP   noToC   RFC1850 - Page 59
           most specific match is the preferred one."
       REFERENCE
          "OSPF Version 2, Appendix C.2  Area parameters"
      INDEX { ospfAreaAggregateAreaID, ospfAreaAggregateLsdbType,
              ospfAreaAggregateNet, ospfAreaAggregateMask }
      ::= { ospfAreaAggregateTable 1 }


OspfAreaAggregateEntry ::=
    SEQUENCE {
        ospfAreaAggregateAreaID
            AreaID,
        ospfAreaAggregateLsdbType
            INTEGER,
        ospfAreaAggregateNet
            IpAddress,
        ospfAreaAggregateMask
            IpAddress,
        ospfAreaAggregateStatus
            RowStatus,
        ospfAreaAggregateEffect
            INTEGER
              }

    ospfAreaAggregateAreaID OBJECT-TYPE
        SYNTAX   AreaID
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The Area the Address Aggregate is to be  found
           within."
       REFERENCE
          "OSPF Version 2, Appendix C.2 Area parameters"
      ::= { ospfAreaAggregateEntry 1 }


    ospfAreaAggregateLsdbType OBJECT-TYPE
        SYNTAX   INTEGER    {
                    summaryLink (3),
                    nssaExternalLink (7)
                  }
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The type of the Address Aggregate.  This field
           specifies  the  Lsdb type that this Address Ag-
           gregate applies to."
       REFERENCE
ToP   noToC   RFC1850 - Page 60
          "OSPF Version 2, Appendix A.4.1 The  Link  State
          Advertisement header"
      ::= { ospfAreaAggregateEntry 2 }


    ospfAreaAggregateNet OBJECT-TYPE
        SYNTAX   IpAddress
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The IP Address of the Net or Subnet  indicated
           by the range."
       REFERENCE
          "OSPF Version 2, Appendix C.2 Area parameters"
      ::= { ospfAreaAggregateEntry 3 }


    ospfAreaAggregateMask OBJECT-TYPE
        SYNTAX   IpAddress
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The Subnet Mask that pertains to  the  Net  or
           Subnet."
       REFERENCE
          "OSPF Version 2, Appendix C.2 Area parameters"
      ::= { ospfAreaAggregateEntry 4 }


    ospfAreaAggregateStatus OBJECT-TYPE
        SYNTAX   RowStatus
        MAX-ACCESS   read-create
        STATUS   current
        DESCRIPTION
           "This variable displays the status of  the  en-
           try.  Setting it to 'invalid' has the effect of
           rendering it inoperative.  The internal  effect
           (row removal) is implementation dependent."
       ::= { ospfAreaAggregateEntry 5 }


    ospfAreaAggregateEffect OBJECT-TYPE
        SYNTAX   INTEGER    {
                    advertiseMatching (1),
                    doNotAdvertiseMatching (2)
                  }
        MAX-ACCESS   read-create
        STATUS   current
ToP   noToC   RFC1850 - Page 61
        DESCRIPTION
           "Subnets subsumed by ranges either trigger  the
           advertisement  of  the indicated aggregate (ad-
           vertiseMatching), or result in the subnet's not
           being advertised at all outside the area."
       DEFVAL   { advertiseMatching }
       ::= { ospfAreaAggregateEntry 6 }


-- conformance information

ospfConformance OBJECT IDENTIFIER ::= { ospf 15 }

ospfGroups      OBJECT IDENTIFIER ::= { ospfConformance 1 }
ospfCompliances OBJECT IDENTIFIER ::= { ospfConformance 2 }

-- compliance statements

    ospfCompliance MODULE-COMPLIANCE
        STATUS  current
        DESCRIPTION
           "The compliance statement "
       MODULE  -- this module
       MANDATORY-GROUPS {
                    ospfBasicGroup,
                    ospfAreaGroup,
                    ospfStubAreaGroup,
                    ospfIfGroup,
                    ospfIfMetricGroup,
                    ospfVirtIfGroup,
                    ospfNbrGroup,
                    ospfVirtNbrGroup,
                    ospfAreaAggregateGroup
           }
       ::= { ospfCompliances 1 }


-- units of conformance

    ospfBasicGroup    OBJECT-GROUP
        OBJECTS {
                    ospfRouterId,
                    ospfAdminStat,
                    ospfVersionNumber,
                    ospfAreaBdrRtrStatus,
                    ospfASBdrRtrStatus,
                    ospfExternLsaCount,
                    ospfExternLsaCksumSum,
ToP   noToC   RFC1850 - Page 62
                    ospfTOSSupport,
                    ospfOriginateNewLsas,
                    ospfRxNewLsas,
                    ospfExtLsdbLimit,
                    ospfMulticastExtensions,
                    ospfExitOverflowInterval,
                    ospfDemandExtensions
        }
        STATUS  current
        DESCRIPTION
           "These objects are required for OSPF systems."
       ::= { ospfGroups 1 }


    ospfAreaGroup    OBJECT-GROUP
        OBJECTS {
                    ospfAreaId,
                    ospfImportAsExtern,
                    ospfSpfRuns,
                    ospfAreaBdrRtrCount,
                    ospfAsBdrRtrCount,
                    ospfAreaLsaCount,
                    ospfAreaLsaCksumSum,
                    ospfAreaSummary,
                    ospfAreaStatus
        }
        STATUS  current
        DESCRIPTION
           "These objects are required  for  OSPF  systems
           supporting areas."
       ::= { ospfGroups 2 }


    ospfStubAreaGroup    OBJECT-GROUP
        OBJECTS {
                    ospfStubAreaId,
                    ospfStubTOS,
                    ospfStubMetric,
                    ospfStubStatus,
                    ospfStubMetricType
        }
        STATUS  current
        DESCRIPTION
           "These objects are required  for  OSPF  systems
           supporting stub areas."
       ::= { ospfGroups 3 }
ToP   noToC   RFC1850 - Page 63
    ospfLsdbGroup    OBJECT-GROUP
        OBJECTS {
                    ospfLsdbAreaId,
                    ospfLsdbType,
                    ospfLsdbLsid,
                    ospfLsdbRouterId,
                    ospfLsdbSequence,
                    ospfLsdbAge,
                    ospfLsdbChecksum,
                    ospfLsdbAdvertisement
        }
        STATUS  current
        DESCRIPTION
           "These objects are required  for  OSPF  systems
           that display their link state database."
       ::= { ospfGroups 4 }


    ospfAreaRangeGroup    OBJECT-GROUP
        OBJECTS {
                    ospfAreaRangeAreaId,
                    ospfAreaRangeNet,
                    ospfAreaRangeMask,
                    ospfAreaRangeStatus,
                    ospfAreaRangeEffect
        }
        STATUS  obsolete
        DESCRIPTION
           "These objects are required for  non-CIDR  OSPF
           systems that support multiple areas."
       ::= { ospfGroups 5 }


    ospfHostGroup    OBJECT-GROUP
        OBJECTS {
                    ospfHostIpAddress,
                    ospfHostTOS,
                    ospfHostMetric,
                    ospfHostStatus,
                    ospfHostAreaID
        }
        STATUS  current
        DESCRIPTION
           "These objects are required  for  OSPF  systems
           that support attached hosts."
       ::= { ospfGroups 6 }
ToP   noToC   RFC1850 - Page 64
    ospfIfGroup    OBJECT-GROUP
        OBJECTS {
                    ospfIfIpAddress,
                    ospfAddressLessIf,
                    ospfIfAreaId,
                    ospfIfType,
                    ospfIfAdminStat,
                    ospfIfRtrPriority,
                    ospfIfTransitDelay,
                    ospfIfRetransInterval,
                    ospfIfHelloInterval,
                    ospfIfRtrDeadInterval,
                    ospfIfPollInterval,
                    ospfIfState,
                    ospfIfDesignatedRouter,
                    ospfIfBackupDesignatedRouter,
                    ospfIfEvents,
                    ospfIfAuthType,
                    ospfIfAuthKey,
                    ospfIfStatus,
                    ospfIfMulticastForwarding,
                    ospfIfDemand
        }
        STATUS  current
        DESCRIPTION
           "These objects are required for OSPF systems."
       ::= { ospfGroups 7 }


    ospfIfMetricGroup    OBJECT-GROUP
        OBJECTS {
                    ospfIfMetricIpAddress,
                    ospfIfMetricAddressLessIf,
                    ospfIfMetricTOS,
                    ospfIfMetricValue,
                    ospfIfMetricStatus
        }
        STATUS  current
        DESCRIPTION
           "These objects are required for OSPF systems."
       ::= { ospfGroups 8 }


    ospfVirtIfGroup    OBJECT-GROUP
        OBJECTS {
                    ospfVirtIfAreaId,
                    ospfVirtIfNeighbor,
                    ospfVirtIfTransitDelay,
ToP   noToC   RFC1850 - Page 65
                    ospfVirtIfRetransInterval,
                    ospfVirtIfHelloInterval,
                    ospfVirtIfRtrDeadInterval,
                    ospfVirtIfState,
                    ospfVirtIfEvents,
                    ospfVirtIfAuthType,
                    ospfVirtIfAuthKey,
                    ospfVirtIfStatus
        }
        STATUS  current
        DESCRIPTION
           "These objects are required for OSPF systems."
       ::= { ospfGroups 9 }


    ospfNbrGroup    OBJECT-GROUP
        OBJECTS {
                    ospfNbrIpAddr,
                    ospfNbrAddressLessIndex,
                    ospfNbrRtrId,
                    ospfNbrOptions,
                    ospfNbrPriority,
                    ospfNbrState,
                    ospfNbrEvents,
                    ospfNbrLsRetransQLen,
                    ospfNbmaNbrStatus,
                    ospfNbmaNbrPermanence,
                    ospfNbrHelloSuppressed
        }
        STATUS  current
        DESCRIPTION
           "These objects are required for OSPF systems."
       ::= { ospfGroups 10 }


    ospfVirtNbrGroup    OBJECT-GROUP
        OBJECTS {
                    ospfVirtNbrArea,
                    ospfVirtNbrRtrId,
                    ospfVirtNbrIpAddr,
                    ospfVirtNbrOptions,
                    ospfVirtNbrState,
                    ospfVirtNbrEvents,
                    ospfVirtNbrLsRetransQLen,
                    ospfVirtNbrHelloSuppressed
        }
        STATUS  current
        DESCRIPTION
ToP   noToC   RFC1850 - Page 66
           "These objects are required for OSPF systems."
       ::= { ospfGroups 11 }


    ospfExtLsdbGroup    OBJECT-GROUP
        OBJECTS {
                    ospfExtLsdbType,
                    ospfExtLsdbLsid,
                    ospfExtLsdbRouterId,
                    ospfExtLsdbSequence,
                    ospfExtLsdbAge,
                    ospfExtLsdbChecksum,
                    ospfExtLsdbAdvertisement
        }
        STATUS  current
        DESCRIPTION
           "These objects are required  for  OSPF  systems
           that display their link state database."
       ::= { ospfGroups 12 }


    ospfAreaAggregateGroup    OBJECT-GROUP
        OBJECTS {
                    ospfAreaAggregateAreaID,
                    ospfAreaAggregateLsdbType,
                    ospfAreaAggregateNet,
                    ospfAreaAggregateMask,
                    ospfAreaAggregateStatus,
                    ospfAreaAggregateEffect
        }
        STATUS  current
        DESCRIPTION
           "These objects are required for OSPF systems."
       ::= { ospfGroups 13 }

END

4.  OSPF Traps

   OSPF is an event driven routing protocol, where an event can be a
   change in an OSPF interface's link-level status, the expiration of an
   OSPF timer or the reception of an OSPF protocol packet.  Many of the
   actions that OSPF takes as a result of these events will result in a
   change of the routing topology.  As routing topologies become large
   and complex it is often difficult to locate the source of a topology
   change or unpredicted routing path by polling a large number or
   routers.  Another approach is to notify a network manager of
   potentially critical OSPF events with SNMP traps.
ToP   noToC   RFC1850 - Page 67
   This section defines a set of traps, objects and mechanisms to
   enhance the ability to manage IP internetworks which use OSPF as its
   IGP.  It is an optional but useful extension to the OSPF MIB.

4.1.  Format Of Trap Definitions

   Section 7 contains contains the trap definitions.

4.2.  Approach

   The mechanism for sending traps is straight-forward.  When an
   exception event occurs, the application notifies the local agent who
   sends a trap to the appropriate SNMP management stations.  The
   message includes the trap type and may include a list of trap
   specific variables.  A new object is defined in section 3.2 that will
   allow a network manager to enable or disable particular OSPF traps.
   Section 5 gives the trap definitions which includes the variable
   lists.  The router ID of the originator of the trap is included in
   the variable list so that the network manager may easily determine
   the source of the trap.

   To limit the frequency of OSPF traps, the following additional
   mechanisms are suggested.

4.3.  Ignoring Initial Activity

   The majority of critical events occur when OSPF is enabled on a
   router, at which time the designated router is elected and neighbor
   adjacencies are formed.  During this initial period a potential flood
   of traps is unnecessary since the events are expected.  To avoid
   unnecessary traps, a router should not originate expected OSPF
   interface related traps until two of that interface's dead timer
   intervals have elapsed.  The expected OSPF interface traps are
   ospfIfStateChange, ospfVirtIfStateChange, ospfNbrStateChange,
   ospfVirtNbrStateChange, ospfTxRetranmit and ospfVirtIfTxRetransmit.
   Additionally, ospfMaxAgeLsa and ospfOriginateLsa traps should not be
   originated until two dead timer intervals have elapsed where the dead
   timer interval used should be the dead timer with the smallest value.

4.4.  Throttling Traps

   The mechanism for throttling the traps is similar to the mechanism
   explained in RFC 1224 [11], section 5.  The basic idea is that there
   is a sliding window in seconds and an upper bound on the number of
   traps that may be generated within this window.  Unlike RFC 1224,
   traps are not sent to inform the network manager that the throttling
   mechanism has kicked in.
ToP   noToC   RFC1850 - Page 68
   A single window should be used to throttle all OSPF traps types
   except for the ospfLsdbOverflow and the ospfLsdbApproachingOverflow
   trap which should not be throttled.  For example, if the window time
   is 3, the upper bound is 3 and the events that would cause trap types
   1,3,5 and 7 occur within a 3 second period, the type 7 trap should
   not be generated.

   Appropriate values are 7 traps with a window time of 10 seconds.

4.5.  One Trap Per OSPF Event

   Several of the traps defined in section 5 are generated as the result
   of finding an unusual condition while parsing an OSPF packet or a
   processing a timer event.  There may be more than one unusual
   condition detected while handling the event.  For example, a link-
   state update packet may contain several retransmitted link-state
   advertisements (LSAs), or a retransmitted database description packet
   may contain several database description entries.  To limit the
   number of traps and variables, OSPF should generate at most one trap
   per OSPF event.  Only the variables associated with the first unusual
   condition should be included with the trap.  Similarly, if more than
   one type of unusual condition is encountered while parsing the
   packet, only the first event will generate a trap.

4.6.  Polling Event Counters

   Many of the tables in the OSPF MIB contain generalized event
   counters.  By enabling the traps defined in this document a network
   manager can obtain more specific information about these events.  A
   network manager may want to poll these event counters and enable
   specific OSPF traps when a particular counter starts increasing
   abnormally.

   The following table shows the relationship between the event counters
   defined in the OSPF MIB and the trap types defined in section 5.


           Counter32                   Trap Type
    -----------------------   ------------------------
    ospfOriginateNewLsas       ospfOriginateLsa
    ospfIfEvents               ospfIfStateChange
                               ospfConfigError
                               ospfIfAuthFailure
                               ospfRxBadPacket
                               ospfTxRetransmit
    ospfVirtIfEvents           ospfVirtIfStateChange
                               ospfVirtIfConfigError
                               ospfVirtIfAuthFailure
ToP   noToC   RFC1850 - Page 69
                               ospfVirtIfRxBadPacket
                               ospfVirtIfTxRetransmit
    ospfNbrEvents              ospfNbrStateChange
    ospfVirtNbrEvents          ospfVirtNbrStateChange
    ospfExternLSACount         ospfLsdbApproachingOverflow
    ospfExternLSACount         ospfLsdbOverflow

5.  OSPF Trap Definitions

OSPF-TRAP-MIB DEFINITIONS ::= BEGIN

    IMPORTS
            MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, IpAddress
                FROM SNMPv2-SMI
            MODULE-COMPLIANCE, OBJECT-GROUP
                FROM SNMPv2-CONF
            ospfRouterId, ospfIfIpAddress, ospfAddressLessIf, ospfIfState,
            ospfVirtIfAreaId, ospfVirtIfNeighbor, ospfVirtIfState,
            ospfNbrIpAddr, ospfNbrAddressLessIndex, ospfNbrRtrId,
            ospfNbrState, ospfVirtNbrArea, ospfVirtNbrRtrId, ospfVirtNbrState,
            ospfLsdbType, ospfLsdbLsid, ospfLsdbRouterId, ospfLsdbAreaId,
            ospfExtLsdbLimit, ospf
                FROM OSPF-MIB;

    ospfTrap MODULE-IDENTITY
           LAST-UPDATED "9501201225Z" -- Fri Jan 20 12:25:50 PST 1995
           ORGANIZATION "IETF OSPF Working Group"
           CONTACT-INFO
           "                      Fred Baker
           Postal:                Cisco Systems
                                  519 Lado Drive
                                  Santa Barbara, California 93111
           Tel:                   +1 805 681 0115
           E-Mail:                fred@cisco.com

                                  Rob Coltun
           Postal:                RainbowBridge Communications
           Tel:                   (301) 340-9416
           E-Mail:                rcoltun@rainbow-bridge.com"
       DESCRIPTION
          "The MIB module to describe traps for  the  OSPF
          Version 2 Protocol."
      ::= { ospf 16 }

-- Trap Support Objects

--         The following are support objects for the OSPF traps.
ToP   noToC   RFC1850 - Page 70
ospfTrapControl OBJECT IDENTIFIER ::= { ospfTrap 1 }
ospfTraps OBJECT IDENTIFIER ::= { ospfTrap 2 }

    ospfSetTrap OBJECT-TYPE
        SYNTAX   OCTET STRING (SIZE(4))
        MAX-ACCESS   read-write
        STATUS   current
        DESCRIPTION
           "A four-octet string serving as a bit  map  for
           the trap events defined by the OSPF traps. This
           object is used to enable and  disable  specific
           OSPF   traps   where  a  1  in  the  bit  field
           represents enabled.  The right-most bit  (least
           significant) represents trap 0."
       ::= { ospfTrapControl 1 }


    ospfConfigErrorType OBJECT-TYPE
        SYNTAX   INTEGER   {
                    badVersion (1),
                    areaMismatch (2),
                    unknownNbmaNbr (3), -- Router is Dr eligible
                    unknownVirtualNbr (4),
                    authTypeMismatch(5),
                    authFailure (6),
                    netMaskMismatch (7),
                    helloIntervalMismatch (8),
                    deadIntervalMismatch (9),
                    optionMismatch (10) }
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "Potential types  of  configuration  conflicts.
           Used  by the ospfConfigError and ospfConfigVir-
           tError traps."
   ::= { ospfTrapControl 2 }


    ospfPacketType OBJECT-TYPE
        SYNTAX   INTEGER   {
                    hello (1),
                    dbDescript (2),
                    lsReq (3),
                    lsUpdate (4),
                    lsAck (5) }
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
ToP   noToC   RFC1850 - Page 71
           "OSPF packet types."
   ::= { ospfTrapControl 3 }


    ospfPacketSrc OBJECT-TYPE
        SYNTAX   IpAddress
        MAX-ACCESS   read-only
        STATUS   current
        DESCRIPTION
           "The IP address of an inbound packet that  can-
           not be identified by a neighbor instance."
       ::= { ospfTrapControl 4 }


-- Traps


    ospfIfStateChange NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfIfIpAddress,
                    ospfAddressLessIf,
                    ospfIfState   -- The new state
                  }
        STATUS             current
        DESCRIPTION
           "An ospfIfStateChange trap signifies that there
           has been a change in the state of a non-virtual
           OSPF interface. This trap should  be  generated
           when  the interface state regresses (e.g., goes
           from Dr to Down) or progresses  to  a  terminal
           state  (i.e.,  Point-to-Point, DR Other, Dr, or
           Backup)."
   ::= { ospfTraps 16 }


    ospfVirtIfStateChange NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfVirtIfAreaId,
                    ospfVirtIfNeighbor,
                    ospfVirtIfState  -- The new state
                  }
        STATUS             current
        DESCRIPTION
           "An ospfIfStateChange trap signifies that there
           has  been a change in the state of an OSPF vir-
           tual interface.
ToP   noToC   RFC1850 - Page 72
           This trap should be generated when  the  inter-
           face  state  regresses  (e.g., goes from Point-
           to-Point to Down) or progresses to  a  terminal
           state (i.e., Point-to-Point)."
   ::= { ospfTraps 1 }


    ospfNbrStateChange NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfNbrIpAddr,
                    ospfNbrAddressLessIndex,
                    ospfNbrRtrId,
                    ospfNbrState  -- The new state
                  }
        STATUS             current
        DESCRIPTION
           "An  ospfNbrStateChange  trap  signifies   that
           there  has been a change in the state of a non-
           virtual OSPF neighbor.   This  trap  should  be
           generated  when  the  neighbor  state regresses
           (e.g., goes from Attempt or Full  to  1-Way  or
           Down)  or progresses to a terminal state (e.g.,
           2-Way or Full).  When an  neighbor  transitions
           from  or  to Full on non-broadcast multi-access
           and broadcast networks, the trap should be gen-
           erated  by the designated router.  A designated
           router transitioning to Down will be  noted  by
           ospfIfStateChange."
   ::= { ospfTraps 2 }


    ospfVirtNbrStateChange NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfVirtNbrArea,
                    ospfVirtNbrRtrId,
                    ospfVirtNbrState  -- The new state
                  }
        STATUS             current
        DESCRIPTION
           "An ospfIfStateChange trap signifies that there
           has  been a change in the state of an OSPF vir-
           tual neighbor.  This trap should  be  generated
           when  the  neighbor state regresses (e.g., goes
           from Attempt or  Full  to  1-Way  or  Down)  or
           progresses to a terminal state (e.g., Full)."
   ::= { ospfTraps 3 }
ToP   noToC   RFC1850 - Page 73
    ospfIfConfigError NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfIfIpAddress,
                    ospfAddressLessIf,
                    ospfPacketSrc,  -- The source IP address
                    ospfConfigErrorType, -- Type of error
                    ospfPacketType
                  }
        STATUS             current
        DESCRIPTION
           "An ospfIfConfigError  trap  signifies  that  a
           packet  has  been received on a non-virtual in-
           terface  from  a  router  whose   configuration
           parameters  conflict  with this router's confi-
           guration parameters.  Note that the  event  op-
           tionMismatch  should  cause  a  trap only if it
           prevents an adjacency from forming."
                  ::= { ospfTraps 4 }


    ospfVirtIfConfigError NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfVirtIfAreaId,
                    ospfVirtIfNeighbor,
                    ospfConfigErrorType, -- Type of error
                    ospfPacketType
                  }
        STATUS             current
        DESCRIPTION
           "An ospfConfigError trap signifies that a pack-
           et  has  been  received  on a virtual interface
           from a router  whose  configuration  parameters
           conflict   with   this  router's  configuration
           parameters.  Note that the event optionMismatch
           should  cause a trap only if it prevents an ad-
           jacency from forming."
   ::= { ospfTraps 5 }


    ospfIfAuthFailure NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfIfIpAddress,
                    ospfAddressLessIf,
                    ospfPacketSrc,  -- The source IP address
                    ospfConfigErrorType, -- authTypeMismatch or
ToP   noToC   RFC1850 - Page 74
                                         -- authFailure
                    ospfPacketType
                  }
        STATUS             current
        DESCRIPTION
           "An ospfIfAuthFailure  trap  signifies  that  a
           packet  has  been received on a non-virtual in-
           terface from a router whose authentication  key
           or  authentication  type  conflicts  with  this
           router's authentication key  or  authentication
           type."
   ::= { ospfTraps 6 }


    ospfVirtIfAuthFailure NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfVirtIfAreaId,
                    ospfVirtIfNeighbor,
                    ospfConfigErrorType, -- authTypeMismatch or
                                         -- authFailure
                    ospfPacketType
                  }
        STATUS             current
        DESCRIPTION
           "An ospfVirtIfAuthFailure trap signifies that a
           packet has been received on a virtual interface
           from a router whose authentication key  or  au-
           thentication  type conflicts with this router's
           authentication key or authentication type."
   ::= { ospfTraps 7 }


    ospfIfRxBadPacket NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfIfIpAddress,
                    ospfAddressLessIf,
                    ospfPacketSrc,  -- The source IP address
                    ospfPacketType
                  }
        STATUS             current
        DESCRIPTION
           "An ospfIfRxBadPacket trap  signifies  that  an
           OSPF  packet has been received on a non-virtual
           interface that cannot be parsed."
   ::= { ospfTraps 8 }
ToP   noToC   RFC1850 - Page 75
    ospfVirtIfRxBadPacket NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfVirtIfAreaId,
                    ospfVirtIfNeighbor,
                    ospfPacketType
                  }
        STATUS             current
        DESCRIPTION
           "An ospfRxBadPacket trap signifies that an OSPF
           packet has been received on a virtual interface
           that cannot be parsed."
   ::= { ospfTraps 9 }


    ospfTxRetransmit NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfIfIpAddress,
                    ospfAddressLessIf,
                    ospfNbrRtrId, -- Destination
                    ospfPacketType,
                    ospfLsdbType,
                    ospfLsdbLsid,
                    ospfLsdbRouterId
                  }
        STATUS             current
        DESCRIPTION
           "An ospfTxRetransmit  trap  signifies  than  an
           OSPF  packet  has  been retransmitted on a non-
           virtual interface.  All packets that may be re-
           transmitted  are associated with an LSDB entry.
           The LS type, LS ID, and Router ID are  used  to
           identify the LSDB entry."
   ::= { ospfTraps 10 }


    ospfVirtIfTxRetransmit NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfVirtIfAreaId,
                    ospfVirtIfNeighbor,
                    ospfPacketType,
                    ospfLsdbType,
                    ospfLsdbLsid,
                    ospfLsdbRouterId
                  }
        STATUS             current
ToP   noToC   RFC1850 - Page 76
        DESCRIPTION
           "An ospfTxRetransmit  trap  signifies  than  an
           OSPF packet has been retransmitted on a virtual
           interface.  All packets that may be retransmit-
           ted  are  associated with an LSDB entry. The LS
           type, LS ID, and Router ID are used to identify
           the LSDB entry."
   ::= { ospfTraps 11 }


    ospfOriginateLsa NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfLsdbAreaId,  -- 0.0.0.0 for AS Externals
                    ospfLsdbType,
                    ospfLsdbLsid,
                    ospfLsdbRouterId
                  }
        STATUS             current
        DESCRIPTION
           "An ospfOriginateLsa trap signifies that a  new
           LSA  has  been originated by this router.  This
           trap should not be invoked for simple refreshes
           of  LSAs  (which happesn every 30 minutes), but
           instead will only be invoked  when  an  LSA  is
           (re)originated due to a topology change.  Addi-
           tionally, this trap does not include LSAs  that
           are  being  flushed  because  they have reached
           MaxAge."
   ::= { ospfTraps 12 }


    ospfMaxAgeLsa NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfLsdbAreaId,  -- 0.0.0.0 for AS Externals
                    ospfLsdbType,
                    ospfLsdbLsid,
                    ospfLsdbRouterId
                  }
        STATUS             current
        DESCRIPTION
           "An ospfMaxAgeLsa trap signifies  that  one  of
           the LSA in the router's link-state database has
           aged to MaxAge."
   ::= { ospfTraps 13 }
ToP   noToC   RFC1850 - Page 77
    ospfLsdbOverflow NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfExtLsdbLimit
                  }
        STATUS             current
        DESCRIPTION
           "An ospfLsdbOverflow trap  signifies  that  the
           number of LSAs in the router's link-state data-
           base has exceeded ospfExtLsdbLimit."
   ::= { ospfTraps 14 }


    ospfLsdbApproachingOverflow NOTIFICATION-TYPE
        OBJECTS {
                    ospfRouterId, -- The originator of the trap
                    ospfExtLsdbLimit
                  }
        STATUS             current
        DESCRIPTION
           "An ospfLsdbApproachingOverflow trap  signifies
           that  the  number of LSAs in the router's link-
           state database has exceeded ninety  percent  of
           ospfExtLsdbLimit."
   ::= { ospfTraps 15 }


-- conformance information

ospfTrapConformance OBJECT IDENTIFIER ::= { ospfTrap 3 }

ospfTrapGroups      OBJECT IDENTIFIER ::= { ospfTrapConformance 1 }
ospfTrapCompliances OBJECT IDENTIFIER ::= { ospfTrapConformance 2 }

-- compliance statements

    ospfTrapCompliance MODULE-COMPLIANCE
        STATUS  current
        DESCRIPTION
           "The compliance statement "
       MODULE  -- this module
       MANDATORY-GROUPS { ospfTrapControlGroup }


        GROUP       ospfTrapControlGroup
        DESCRIPTION
           "This group is optional but recommended for all
           OSPF systems"
ToP   noToC   RFC1850 - Page 78
       ::= { ospfTrapCompliances 1 }


-- units of conformance

    ospfTrapControlGroup    OBJECT-GROUP
        OBJECTS {
                           ospfSetTrap,
                           ospfConfigErrorType,
                           ospfPacketType,
                           ospfPacketSrc
        }
        STATUS  current
        DESCRIPTION
           "These objects are required  to  control  traps
           from OSPF systems."
       ::= { ospfTrapGroups 1 }


END

6.  Acknowledgements

   This document was produced by the OSPF Working Group.

7.  References

   [1] Cerf, V., "IAB Recommendations for the Development of Internet
       Network Management Standards", RFC 1052, NRI, April 1988.

   [2] Cerf, V., "Report of the Second Ad Hoc Network Management Review
       Group", RFC 1109, NRI, August 1989.

   [3] Rose M., and K. McCloghrie, "Structure and Identification of
       Management Information for TCP/IP-based internets", STD 16, RFC
       1155, Performance Systems International, Hughes LAN Systems, May
       1990.

   [4] McCloghrie K., and M. Rose, "Management Information Base for
       Network Management of TCP/IP-based internets", RFC 1156, Hughes
       LAN Systems, Performance Systems International, May 1990.

   [5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
       Network Management Protocol", STD 15, RFC 1157, SNMP Research,
       Performance Systems International, Performance Systems
       International, MIT Laboratory for Computer Science, May 1990.
ToP   noToC   RFC1850 - Page 79
   [6] Rose M., Editor, "Management Information Base for Network
       Management of TCP/IP-based internets: MIB-II", STD 17, RFC 1213,
       Performance Systems International, March 1991.

   [7] Information processing systems - Open Systems Interconnection -
       Specification of Abstract Syntax Notation One (ASN.1),
       International Organization for Standardization, International
       Standard 8824, December 1987.

   [8] Information processing systems - Open Systems Interconnection -
       Specification of Basic Encoding Rules for Abstract Notation One
       (ASN.1), International Organization for Standardization,
       International Standard 8825, December 1987.

   [9] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions",
       STD 16, RFC 1212, Performance Systems International, Hughes LAN
       Systems, March 1991.

  [10] Rose, M., Editor, "A Convention for Defining Traps for use with
       the SNMP", RFC 1215, Performance Systems International, March
       1991.

  [11] Steinberg, L., "Techniques for Managing Asynchronously Generated
       Alerts", RFC 1224, IBM Corporation, May 1991.

  [12] Moy, J., "Multicast Extensions to OSPF", RFC 1584, Proteon, Inc.,
       September 1993.
ToP   noToC   RFC1850 - Page 80
8.  Security Considerations

   Security issues are not discussed in this memo.

9.  Authors' Addresses

   Fred Baker
   cisco Systems, Inc.
   519 Lado Drive
   Santa Barbara, CA 93111

   Phone: (805) 681-0115
   EMail: fred@cisco.com


   Rob Coltun
   RainbowBridge Communications

   Phone: (301) 340-9416
   EMail: rcoltun@rainbow-bridge.com